Asymptotic study of the vibration problem for an elastic body deeply immersed in an incompressible fluid
- Volume: 19, Issue: 1, page 145-170
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] S. CERNEAU et E. SANCHEZ-PALENCIA, Sur les vibrations libres des corps élastiques plongés dans des fluides, J. Mecan. 15, 1976, pp. 399-425. Zbl0332.76058MR428884
- [2] R. OHAYON and E. SANCHEZ-PALENCIA, On the vibration problem for an elasticOn the vibration problem for an elastic body surrounded by a slightly compressible fluid, R.A.I.R.O. Anal. Num. 17, 1983, pp. 311-326. Zbl0513.73055MR702140
- [3] P. LAX and R. PHILLIPS, Scattering theory, Acad. Press, New York, 1967. Zbl0186.16301MR217440
- [4] J. RALSTON, Scatterring theory, Cours de l'école d'été d'analyse numérique INRIA, Sept. 1981.
- [5] D. EUVRARD, A. JAMI, C. MORICE and Y. OUSSET, Calcul numérique des oscillations engendrées par la houle, J. Mecan. 16, 1977, pp. 289-326. Zbl0358.76016MR495687
- [6] MAZ'JA, Travaux du séminaire Sobolev, Novosibirsk, 1977.
- [7] J THOMAS BEALE, Eigenfunctions expansions for objects floating in an open sea, Comm Pure Appl Math 30, 1977, pp 289-313. Zbl0336.76004MR670432
- [8] M. LENOIR and D. MARTIN, An application of the principle of limiting absorption to the motion of floating bodies, J. Math. Anal. Appl. 79, 1981, pp. 370-383. Zbl0464.76013MR606488
- [9] M. LENOIR and A. JAMI, A variationnal formulation for exterior problems in linear hydrodynamics, Comp. Meth. Appl. Mech Eng. 16, 1978, pp. 341-359. Zbl0392.76020
- [10] T. KATO, Pertubation theory for linear operators, Springer, Berlin, 1966 Zbl0148.12601
- [11] J. C. NEDELEC, Approximation des équations intégrales en mécanique et en physique, Cours de l'école d'été d'analyse numérique EDF-IRIA-CEA, June 1977.
- [12] W. RUDIN, Real and Complex Analysis, McGraw-Hill Book Company, New York, 1966. Zbl0142.01701MR210528
- [13] F. JOHN, On the motions of floating bodies, II, Comm Pure Appl. Math 3, 1950, pp 45-101. MR37118
- [14] M. ABRAMOVITZ and I. STEGUN, Handbook of mathematical functions, Dover Publications, Inc, New York, 1970.