Spectral properties of a type of integro-differential stiff problems

J. Cainzos

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 2, page 179-193
  • ISSN: 0764-583X

How to cite

top

Cainzos, J.. "Spectral properties of a type of integro-differential stiff problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.2 (1985): 179-193. <http://eudml.org/doc/193445>.

@article{Cainzos1985,
author = {Cainzos, J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {integro-differential stiff problem; vibrations of a linear viscoelastic body; existence; uniqueness; Hilbert space; infinitesimal generator; contraction semigroup; formal asymptotic expansion},
language = {eng},
number = {2},
pages = {179-193},
publisher = {Dunod},
title = {Spectral properties of a type of integro-differential stiff problems},
url = {http://eudml.org/doc/193445},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Cainzos, J.
TI - Spectral properties of a type of integro-differential stiff problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 2
SP - 179
EP - 193
LA - eng
KW - integro-differential stiff problem; vibrations of a linear viscoelastic body; existence; uniqueness; Hilbert space; infinitesimal generator; contraction semigroup; formal asymptotic expansion
UR - http://eudml.org/doc/193445
ER -

References

top
  1. [1] H. BREZIS, Opérateurs maximaux monotones, North-Holland, Amsterdam (1973). 
  2. [2] C. M. DAFERMOS, An abstract Volterra equation with application to linear viscoelasticity, J. Diff. Équations, 7 (1970), pp. 554-569. Zbl0212.45302MR259670
  3. [3] C. M. DAFFERMOS, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), pp. 297-308. Zbl0214.24503MR281400
  4. [4] C. M. DAFERMOS, Contraction semigroups and trend to equilibrium in continuum mechanics, Lec. Notes Math., 503, Springer, Berlin (1975), pp. 295-306. Zbl0345.47032
  5. [5] J. L. LIONS, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lec. Notes Math., 323, Springer, Berlin (1973). Zbl0268.49001MR600331
  6. [6] M. LOBO-HIDALGO, Propriétés spectrales de certaines équations différentielles intervenant en viscoélasticité, Rend. Sem. Mat. Univ. Polit. Torino, 39 (1981), pp. 33-51. Zbl0489.73063MR660992
  7. [7] M. LOBO-HIDALGO and E. SANCHEZ-PALENCIA, Perturbation of spectral properties for a class of stiff problems, Proc. Fourth Inter. Symp. Comp. Method. in Science and Engineering, North-Holland, Amsterdam (1980). Zbl0448.35078MR584063
  8. [8] V. PETERSON, V. V. VARADAN and Y. K. VARADAN, Scattering of acoustic waves by layered elastic and viscoelastic obstacles in water, J. Acoust. Soc. Am., 68 (1980), pp. 673-685. Zbl0465.76077MR579191

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.