On the regularity of the variational solution of the Tricomi problem in the elliptic region
M. Vanninathan; G. D. Veerappa Gowda
- Volume: 19, Issue: 2, page 327-340
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVanninathan, M., and Veerappa Gowda, G. D.. "On the regularity of the variational solution of the Tricomi problem in the elliptic region." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.2 (1985): 327-340. <http://eudml.org/doc/193451>.
@article{Vanninathan1985,
author = {Vanninathan, M., Veerappa Gowda, G. D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {elliptic-parabolic boundary value problem; weak solution; regularity; Tricomi Problem; Neumann Problem},
language = {eng},
number = {2},
pages = {327-340},
publisher = {Dunod},
title = {On the regularity of the variational solution of the Tricomi problem in the elliptic region},
url = {http://eudml.org/doc/193451},
volume = {19},
year = {1985},
}
TY - JOUR
AU - Vanninathan, M.
AU - Veerappa Gowda, G. D.
TI - On the regularity of the variational solution of the Tricomi problem in the elliptic region
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 2
SP - 327
EP - 340
LA - eng
KW - elliptic-parabolic boundary value problem; weak solution; regularity; Tricomi Problem; Neumann Problem
UR - http://eudml.org/doc/193451
ER -
References
top- [1] M. ABRAMOWITZ and A. STEGUN, Handbook of Mathematical Functions, Dover Publications Inc., New York, 1970. Zbl0171.38503
- [2] L. BERS, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley, New York, 1958. Zbl0083.20501MR96477
- [3] A. V. BITSADZE, Equations of the Mixed Type, Macmillan, New York, 1964. Zbl0111.29205MR163078
- [4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [5] A. G. DEACON and S. OSHER, A Finite Element Method for a boundary value problem of mixed type, SIAM J. Numer. Anal., 16 (5) (1979), pp. 756-778. Zbl0438.65093MR543966
- [6] C. FERRARI and F. G. TRICOMI, Transonic Aerodynamics, Academic Press, New York, 1968. Zbl0177.55304
- [7] P. GERMAIN, BADER, Solutions Elémentaires de certaines Equations aux dérivées partielles du type mixte, Bull. Soc. Math. Fr. 81 (1953), pp. 145-174. Zbl0051.07503MR58834
- [8] P. GRISVARD, Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solutions of Partial Differential Equations III. Synspade 1975, Bert Hubbord Ed., pp. 207-274. Zbl0361.35022MR466912
- [9] T. KATO, Perturbation Theory for Linear Operators, Springer Verlag, New York, 1966. Zbl0148.12601MR203473
- [10] V. A. KONDRATEV, Boundary problems for Elliptic Equations in Domains with conical or Angular points, Trans. Moscow. Math. Soc., Trudy, Vol. 16 (1967), (Russian), pp. 209-292. AMS Translations, 1968. Zbl0194.13405MR226187
- [11] C. MORAWETZ, A uniqueness theorem for Frankl's problem, Comm. Pure Appl. Math., 7 (1954), pp. 697-703. Zbl0056.31904MR65791
- [12] C. MORAWETZ, A weak solution for a system of equations of elliptic-hyperbolic type, Comm. Pure Appl. Math., 11 (1958), pp. 315-331. Zbl0081.31201MR96893
- [13] C. MORAWETZ, Uniqueness for the analogue of the Neumann problem for Mixed Equations, The Michigan Math. J., 4 (1957), pp. 5-14. Zbl0077.09602MR85441
- [14] S. NOCILLA, G. GEYMONAT; B. GABOTTI, Il profil alose ad arco di cerchio in flusso transonico continuo senzi incidenza, Annali di Mat. Pura ed applicat, 84 (1970), pp. 341-374. Zbl0233.76126
- [15] S. OSHER, Boundary value problems for Equations of Mixed Type I, The Lavrentiev-Bitsadze Model, Comm. PDE, 2 (5) (1977), pp. 499-547. Zbl0358.35055MR492931
- [16] V. PASHKOVISKII, A functional method of solving Tricomi Problem, Differencial'nye Uravneniya, 4 (1968), pp. 63-73 (Russian). Zbl0233.35068MR235297
- [17] B. SPAIN and M. G. SMITH, Functions of Mathematical Physics, van Nostrand, London, 1970. Zbl0186.37501
- [18] G. STRANG and G. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. Zbl0356.65096MR443377
- [19] J. A. TRANGENSTEIN, A Finite Element Method for the Tricomi Problem in the elliptic region, SIAM J. Numer. Anal., 14 (1977), pp. 1066-1077. Zbl0399.65079MR471379
- [20] J. A. TRANGENSTEIN, A Finite Element Method for the Tricomi Problem in the Elliptic Region, Thesis, Cornell University, Ithaca, N. Y. 1975.
- [21] F. TREVES, Introduction to Pseudo-Differential Operators and Fourier Integral Operators, Vol. I, Plenum Press, NewYork, 1980. Zbl0453.47027
- [22] S USPENSKII, Imbedding and Extension theorems for a class of functions, II, Sib. Math. J., 7 (1966), pp. 409-418 (Russian). MR198223
- [23] M. VANNINATHAN and G. D. VEERAPPA GOWDA, Approximation of Tricomi. Problem with Neumann Boundary Condition, To appear. Zbl0527.65077MR757493
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.