On the regularity of the variational solution of the Tricomi problem in the elliptic region

M. Vanninathan; G. D. Veerappa Gowda

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 2, page 327-340
  • ISSN: 0764-583X

How to cite

top

Vanninathan, M., and Veerappa Gowda, G. D.. "On the regularity of the variational solution of the Tricomi problem in the elliptic region." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.2 (1985): 327-340. <http://eudml.org/doc/193451>.

@article{Vanninathan1985,
author = {Vanninathan, M., Veerappa Gowda, G. D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {elliptic-parabolic boundary value problem; weak solution; regularity; Tricomi Problem; Neumann Problem},
language = {eng},
number = {2},
pages = {327-340},
publisher = {Dunod},
title = {On the regularity of the variational solution of the Tricomi problem in the elliptic region},
url = {http://eudml.org/doc/193451},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Vanninathan, M.
AU - Veerappa Gowda, G. D.
TI - On the regularity of the variational solution of the Tricomi problem in the elliptic region
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 2
SP - 327
EP - 340
LA - eng
KW - elliptic-parabolic boundary value problem; weak solution; regularity; Tricomi Problem; Neumann Problem
UR - http://eudml.org/doc/193451
ER -

References

top
  1. [1] M. ABRAMOWITZ and A. STEGUN, Handbook of Mathematical Functions, Dover Publications Inc., New York, 1970. Zbl0171.38503
  2. [2] L. BERS, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley, New York, 1958. Zbl0083.20501MR96477
  3. [3] A. V. BITSADZE, Equations of the Mixed Type, Macmillan, New York, 1964. Zbl0111.29205MR163078
  4. [4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  5. [5] A. G. DEACON and S. OSHER, A Finite Element Method for a boundary value problem of mixed type, SIAM J. Numer. Anal., 16 (5) (1979), pp. 756-778. Zbl0438.65093MR543966
  6. [6] C. FERRARI and F. G. TRICOMI, Transonic Aerodynamics, Academic Press, New York, 1968. Zbl0177.55304
  7. [7] P. GERMAIN, BADER, Solutions Elémentaires de certaines Equations aux dérivées partielles du type mixte, Bull. Soc. Math. Fr. 81 (1953), pp. 145-174. Zbl0051.07503MR58834
  8. [8] P. GRISVARD, Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solutions of Partial Differential Equations III. Synspade 1975, Bert Hubbord Ed., pp. 207-274. Zbl0361.35022MR466912
  9. [9] T. KATO, Perturbation Theory for Linear Operators, Springer Verlag, New York, 1966. Zbl0148.12601MR203473
  10. [10] V. A. KONDRATEV, Boundary problems for Elliptic Equations in Domains with conical or Angular points, Trans. Moscow. Math. Soc., Trudy, Vol. 16 (1967), (Russian), pp. 209-292. AMS Translations, 1968. Zbl0194.13405MR226187
  11. [11] C. MORAWETZ, A uniqueness theorem for Frankl's problem, Comm. Pure Appl. Math., 7 (1954), pp. 697-703. Zbl0056.31904MR65791
  12. [12] C. MORAWETZ, A weak solution for a system of equations of elliptic-hyperbolic type, Comm. Pure Appl. Math., 11 (1958), pp. 315-331. Zbl0081.31201MR96893
  13. [13] C. MORAWETZ, Uniqueness for the analogue of the Neumann problem for Mixed Equations, The Michigan Math. J., 4 (1957), pp. 5-14. Zbl0077.09602MR85441
  14. [14] S. NOCILLA, G. GEYMONAT; B. GABOTTI, Il profil alose ad arco di cerchio in flusso transonico continuo senzi incidenza, Annali di Mat. Pura ed applicat, 84 (1970), pp. 341-374. Zbl0233.76126
  15. [15] S. OSHER, Boundary value problems for Equations of Mixed Type I, The Lavrentiev-Bitsadze Model, Comm. PDE, 2 (5) (1977), pp. 499-547. Zbl0358.35055MR492931
  16. [16] V. PASHKOVISKII, A functional method of solving Tricomi Problem, Differencial'nye Uravneniya, 4 (1968), pp. 63-73 (Russian). Zbl0233.35068MR235297
  17. [17] B. SPAIN and M. G. SMITH, Functions of Mathematical Physics, van Nostrand, London, 1970. Zbl0186.37501
  18. [18] G. STRANG and G. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. Zbl0356.65096MR443377
  19. [19] J. A. TRANGENSTEIN, A Finite Element Method for the Tricomi Problem in the elliptic region, SIAM J. Numer. Anal., 14 (1977), pp. 1066-1077. Zbl0399.65079MR471379
  20. [20] J. A. TRANGENSTEIN, A Finite Element Method for the Tricomi Problem in the Elliptic Region, Thesis, Cornell University, Ithaca, N. Y. 1975. 
  21. [21] F. TREVES, Introduction to Pseudo-Differential Operators and Fourier Integral Operators, Vol. I, Plenum Press, NewYork, 1980. Zbl0453.47027
  22. [22] S USPENSKII, Imbedding and Extension theorems for a class of functions, II, Sib. Math. J., 7 (1966), pp. 409-418 (Russian). MR198223
  23. [23] M. VANNINATHAN and G. D. VEERAPPA GOWDA, Approximation of Tricomi. Problem with Neumann Boundary Condition, To appear. Zbl0527.65077MR757493

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.