Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero
- Volume: 21, Issue: 3, page 361-404
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAdded, Stéphane, and Added, Hélène. "Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.3 (1987): 361-404. <http://eudml.org/doc/193506>.
@article{Added1987,
author = {Added, Stéphane, Added, Hélène},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence; compressible Navier-Stokes equations; incompressible Navier- Stokes equations; initial condition; initial layer; Euler's equations},
language = {eng},
number = {3},
pages = {361-404},
publisher = {Dunod},
title = {Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero},
url = {http://eudml.org/doc/193506},
volume = {21},
year = {1987},
}
TY - JOUR
AU - Added, Stéphane
AU - Added, Hélène
TI - Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 3
SP - 361
EP - 404
LA - eng
KW - convergence; compressible Navier-Stokes equations; incompressible Navier- Stokes equations; initial condition; initial layer; Euler's equations
UR - http://eudml.org/doc/193506
ER -
References
top- [1] S. KLAINERMAN and A. MAJDA, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, C.P.A.M. 34 (1981) pp.481-524. Zbl0476.76068MR615627
- [2] S. KAINERMAN and A. MAJDA, Compressible and incompressible fluids, C.P.A.M. 35 (1982) pp. 629-651. Zbl0478.76091MR668409
- [3] T. NISHIDA and A. MATSUMURA, The initial valueproblem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ. 20-1 (1980) pp. 67-104. Zbl0429.76040MR564670
- [4] A. LAGHA, Limite des équations d'un fluide compressible lorsque la compressibilité tend vers 0, Pré-pub. Math. Univ. Paris Nord, Fasc. n° 37. Zbl0544.76072
- [5] R. TEMAN, The evolution Navier-Stokes equations, North-Holland (1977) pp. 427-443.
- [6] A. MAJDA, Compressible fluid flow and Systems of conservation laws in several space variables, Univ. of California, Berkeley. Zbl0537.76001
- [7] H. ADDED and S. ADDED, Equations of Langmuir's turbulence and non linear chrödinger équation, smoothness and approximation, Pré-pub. Math. Univ. Paris Nord. Zbl0655.76044
- [8] S. KLAINERMAN, Global existence for non linear wave equations, C.P.A.M. 33 (1980) pp. 43-101. Zbl0405.35056MR544044
- [9] A. FRIEDMAN, Partial differential equations, Holt, Rinehart and Winston (1969). Zbl0224.35002MR445088
- [10] T. KATO, Non stationary flows of viscous and idéal fluids in R3, Functional Analysis 9 (1972), pp. 296-305. Zbl0229.76018MR481652
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.