Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero

Stéphane Added; Hélène Added

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 3, page 361-404
  • ISSN: 0764-583X

How to cite

top

Added, Stéphane, and Added, Hélène. "Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.3 (1987): 361-404. <http://eudml.org/doc/193506>.

@article{Added1987,
author = {Added, Stéphane, Added, Hélène},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence; compressible Navier-Stokes equations; incompressible Navier- Stokes equations; initial condition; initial layer; Euler's equations},
language = {eng},
number = {3},
pages = {361-404},
publisher = {Dunod},
title = {Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero},
url = {http://eudml.org/doc/193506},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Added, Stéphane
AU - Added, Hélène
TI - Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 3
SP - 361
EP - 404
LA - eng
KW - convergence; compressible Navier-Stokes equations; incompressible Navier- Stokes equations; initial condition; initial layer; Euler's equations
UR - http://eudml.org/doc/193506
ER -

References

top
  1. [1] S. KLAINERMAN and A. MAJDA, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, C.P.A.M. 34 (1981) pp.481-524. Zbl0476.76068MR615627
  2. [2] S. KAINERMAN and A. MAJDA, Compressible and incompressible fluids, C.P.A.M. 35 (1982) pp. 629-651. Zbl0478.76091MR668409
  3. [3] T. NISHIDA and A. MATSUMURA, The initial valueproblem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ. 20-1 (1980) pp. 67-104. Zbl0429.76040MR564670
  4. [4] A. LAGHA, Limite des équations d'un fluide compressible lorsque la compressibilité tend vers 0, Pré-pub. Math. Univ. Paris Nord, Fasc. n° 37. Zbl0544.76072
  5. [5] R. TEMAN, The evolution Navier-Stokes equations, North-Holland (1977) pp. 427-443. 
  6. [6] A. MAJDA, Compressible fluid flow and Systems of conservation laws in several space variables, Univ. of California, Berkeley. Zbl0537.76001
  7. [7] H. ADDED and S. ADDED, Equations of Langmuir's turbulence and non linear chrödinger équation, smoothness and approximation, Pré-pub. Math. Univ. Paris Nord. Zbl0655.76044
  8. [8] S. KLAINERMAN, Global existence for non linear wave equations, C.P.A.M. 33 (1980) pp. 43-101. Zbl0405.35056MR544044
  9. [9] A. FRIEDMAN, Partial differential equations, Holt, Rinehart and Winston (1969). Zbl0224.35002MR445088
  10. [10] T. KATO, Non stationary flows of viscous and idéal fluids in R3, Functional Analysis 9 (1972), pp. 296-305. Zbl0229.76018MR481652

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.