Meilleure approximation en norme vectorielle et théorie de la localisation
- Volume: 21, Issue: 4, page 605-626
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDurier, Roland. "Meilleure approximation en norme vectorielle et théorie de la localisation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.4 (1987): 605-626. <http://eudml.org/doc/193516>.
@article{Durier1987,
author = {Durier, Roland},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {4},
pages = {605-626},
publisher = {Dunod},
title = {Meilleure approximation en norme vectorielle et théorie de la localisation},
url = {http://eudml.org/doc/193516},
volume = {21},
year = {1987},
}
TY - JOUR
AU - Durier, Roland
TI - Meilleure approximation en norme vectorielle et théorie de la localisation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 4
SP - 605
EP - 626
LA - fre
UR - http://eudml.org/doc/193516
ER -
References
top- [1] J. P. AUBIN, L'analyse non linéaire et ses motivations économiques, Masson (1984). Zbl0551.90001MR754997
- [2] G. R. BITRAN, L. MAGNANTI, The structure of admissible points with respect to cone dominance, Journal Optimization Theory and Applications, 29 (1979) 573-614. Zbl0389.52021MR552107
- [3] L. G. CHALMET, R. L. FRANCIS and A. KOLEN, Finding efficient solutions for rectilinear distance location problem efficiently, European Journal of Operational Research, 6 (1986), 117-124. Zbl0451.90037MR626427
- [4] R. DURIER, On efficient points and Fermat-Weber problem, Working Paper, University of Dijon (1984).
- [5] R. DURIER, Weighting factor results in vector optimization, Working Paper, University of Dijon (1985). Zbl0628.90075
- [6] R. DURIER, C. MICHELOT, Geometrical properties of the Fermat-Weber problem, European Journal of Operational Research, 20 (1985), 332-343. Zbl0564.90013MR800909
- [7] R. DURIER, C. MICHELOT, Sets of efficient points in a normed space, Journal of Mathematical Analysis and Applications, à paraître. Zbl0605.49020
- [8] A. M. GEOFFRION, Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications, 22 (1968), 618-630. Zbl0181.22806MR229453
- [9] P. HANSEN, J. PERREUR, J. F. THISSE, Location theory, dominance and convexity : some further results, Operations Research, 28 (1980), 1241-1250. Zbl0449.90027
- [10] D. T. LUC, Structure of the efficient point set, Proceedings of the American Mathematical Society, 95 (1985), 433-440. Zbl0596.49007MR806083
- [11] H. MOULIN, F. FOGELMAN-SOULIE, La convexité dans les mathématiques de la décision, Hermann (1979).
- [12] P. H. NACCACHE, Connectedness of the set of nondominated outcomes in multicriteria optimization, Journal of Optimization Theory and Applications, 25 (1978), 459-467. Zbl0363.90108MR508110
- [13] F. ROBERT, Étude et utilisation de normes vectoriellesen analyse numérique linéaire, Thèse de Doctorat ès Sciences, Grenoble (1968).
- [14] F. ROBERT, Meilleure approximation en norme vectorielle et minima de Pareto, Modélisation Mathématique et Analyse Numérique, 19 (1985), 89-110. Zbl0558.41035MR813690
- [15] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press (1970). Zbl0193.18401MR274683
- [16] J. F. THISSE, J. E. WARD, R. E. WENDELL, Some properties of location problems with block and round norms, Opérations Research, 32 (1984), 1309-1327. Zbl0557.90023MR775261
- [17] J. E. WARD, R. E. WENDELL, Characterizing efficient points in location problem under the one-infinity norm, Locational analysis of public facilities, ed. J. F. Thisse et H. G. Zoller, North Holland, Studies in mathematical and managed economies, 31, (1983), 413-429.
- [18] R. E. WENDELL, A. P. HURTER, Location theory, dominance and convexity,Operations research, 21 (1973), 314-321. Zbl0265.90040MR351409
- [19] R. E. WENDELL, A. P. HURTER, T. J. LOWE, Efficient points in location problems, AIEE Transactions, 9 (1973), 238-246. MR472073
- [20] R. WERNSDORFF, On the connectedness of the set of efficient points in convex optimization problems with multiple or random objectives, Mathematische Operationsforschung und Statistik, ser. Optimization, 15 (1984), 379-387. Zbl0553.90074MR756330
- [21] D. J. WHITE, Optimality and efficiency, John Wiley and Sons (1982). Zbl0561.90087MR693459
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.