Meilleure approximation en norme vectorielle et théorie de la localisation

Roland Durier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 4, page 605-626
  • ISSN: 0764-583X

How to cite

top

Durier, Roland. "Meilleure approximation en norme vectorielle et théorie de la localisation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.4 (1987): 605-626. <http://eudml.org/doc/193516>.

@article{Durier1987,
author = {Durier, Roland},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {4},
pages = {605-626},
publisher = {Dunod},
title = {Meilleure approximation en norme vectorielle et théorie de la localisation},
url = {http://eudml.org/doc/193516},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Durier, Roland
TI - Meilleure approximation en norme vectorielle et théorie de la localisation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 4
SP - 605
EP - 626
LA - fre
UR - http://eudml.org/doc/193516
ER -

References

top
  1. [1] J. P. AUBIN, L'analyse non linéaire et ses motivations économiques, Masson (1984). Zbl0551.90001MR754997
  2. [2] G. R. BITRAN, L. MAGNANTI, The structure of admissible points with respect to cone dominance, Journal Optimization Theory and Applications, 29 (1979) 573-614. Zbl0389.52021MR552107
  3. [3] L. G. CHALMET, R. L. FRANCIS and A. KOLEN, Finding efficient solutions for rectilinear distance location problem efficiently, European Journal of Operational Research, 6 (1986), 117-124. Zbl0451.90037MR626427
  4. [4] R. DURIER, On efficient points and Fermat-Weber problem, Working Paper, University of Dijon (1984). 
  5. [5] R. DURIER, Weighting factor results in vector optimization, Working Paper, University of Dijon (1985). Zbl0628.90075
  6. [6] R. DURIER, C. MICHELOT, Geometrical properties of the Fermat-Weber problem, European Journal of Operational Research, 20 (1985), 332-343. Zbl0564.90013MR800909
  7. [7] R. DURIER, C. MICHELOT, Sets of efficient points in a normed space, Journal of Mathematical Analysis and Applications, à paraître. Zbl0605.49020
  8. [8] A. M. GEOFFRION, Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications, 22 (1968), 618-630. Zbl0181.22806MR229453
  9. [9] P. HANSEN, J. PERREUR, J. F. THISSE, Location theory, dominance and convexity : some further results, Operations Research, 28 (1980), 1241-1250. Zbl0449.90027
  10. [10] D. T. LUC, Structure of the efficient point set, Proceedings of the American Mathematical Society, 95 (1985), 433-440. Zbl0596.49007MR806083
  11. [11] H. MOULIN, F. FOGELMAN-SOULIE, La convexité dans les mathématiques de la décision, Hermann (1979). 
  12. [12] P. H. NACCACHE, Connectedness of the set of nondominated outcomes in multicriteria optimization, Journal of Optimization Theory and Applications, 25 (1978), 459-467. Zbl0363.90108MR508110
  13. [13] F. ROBERT, Étude et utilisation de normes vectoriellesen analyse numérique linéaire, Thèse de Doctorat ès Sciences, Grenoble (1968). 
  14. [14] F. ROBERT, Meilleure approximation en norme vectorielle et minima de Pareto, Modélisation Mathématique et Analyse Numérique, 19 (1985), 89-110. Zbl0558.41035MR813690
  15. [15] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press (1970). Zbl0193.18401MR274683
  16. [16] J. F. THISSE, J. E. WARD, R. E. WENDELL, Some properties of location problems with block and round norms, Opérations Research, 32 (1984), 1309-1327. Zbl0557.90023MR775261
  17. [17] J. E. WARD, R. E. WENDELL, Characterizing efficient points in location problem under the one-infinity norm, Locational analysis of public facilities, ed. J. F. Thisse et H. G. Zoller, North Holland, Studies in mathematical and managed economies, 31, (1983), 413-429. 
  18. [18] R. E. WENDELL, A. P. HURTER, Location theory, dominance and convexity,Operations research, 21 (1973), 314-321. Zbl0265.90040MR351409
  19. [19] R. E. WENDELL, A. P. HURTER, T. J. LOWE, Efficient points in location problems, AIEE Transactions, 9 (1973), 238-246. MR472073
  20. [20] R. WERNSDORFF, On the connectedness of the set of efficient points in convex optimization problems with multiple or random objectives, Mathematische Operationsforschung und Statistik, ser. Optimization, 15 (1984), 379-387. Zbl0553.90074MR756330
  21. [21] D. J. WHITE, Optimality and efficiency, John Wiley and Sons (1982). Zbl0561.90087MR693459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.