Identifiabilité d'un coefficient variable en espace dans une équation parabolique
- Volume: 21, Issue: 4, page 627-639
- ISSN: 0764-583X
Access Full Article
topHow to cite
topEl Badia, A.. "Identifiabilité d'un coefficient variable en espace dans une équation parabolique." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.4 (1987): 627-639. <http://eudml.org/doc/193517>.
@article{ElBadia1987,
author = {El Badia, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {identifiability; spatially varying parameter; boundary data; inverse Sturm-Liouville problem},
language = {fre},
number = {4},
pages = {627-639},
publisher = {Dunod},
title = {Identifiabilité d'un coefficient variable en espace dans une équation parabolique},
url = {http://eudml.org/doc/193517},
volume = {21},
year = {1987},
}
TY - JOUR
AU - El Badia, A.
TI - Identifiabilité d'un coefficient variable en espace dans une équation parabolique
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 4
SP - 627
EP - 639
LA - fre
KW - identifiability; spatially varying parameter; boundary data; inverse Sturm-Liouville problem
UR - http://eudml.org/doc/193517
ER -
References
top- [1] I. M. GEL'FAND and B. LEVITAN (1955), On the determination of a differential équation from its spectral fonction. Amer. Math. Soc. Translations, Serie 2, vol. 1, pp. 253-304. Zbl0066.33603MR73805
- [2] H. HOCHSTADT (1973), The inverse Sturm-Liouville problem. Communication on Pure and Applied Mathématiques, vol. XXVI, pp. 716-729. Zbl0281.34015MR330607
- [3] H. HOCHSTADT (1976), On the determination of the density of a vibrating string from spectral data. J. of Math Analysis and Applications 55, pp. 673-685. Zbl0337.34023MR432968
- [4] A. MIZUTANI (1984), On the inverse Sturm-Liouville problem. J. Fac. Sci. Univ. Tokyo, Sect. 1A, Math., 31, pp. 319-350. Zbl0568.65056MR763425
- [5] R. MURAYAMA (1981), The Gel'fand and Levitan theory and certain inverse problem. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math, 28, pp. 317-330. Zbl0485.35082MR633001
- [6] A. PIECE (1979), Unique identification of eigenvalues and coefficients in a parabolic problem. SIAM J. Control and Optimization, vol 17, n° 4, Jully. Zbl0415.35035MR534419
- [7] T. SUZUKI (1985), On the inverse Sturm-Liouville problem for sqatialy symmetric operators, I. J. of Differential Equations, 56, pp. 165-194. Zbl0547.34017MR774161
- [8] E. C. TITCHMARSH (1938), Introduction to the theory of Fourier integrals, Oxford University Press, London. JFM63.0367.05
- [9] M. COURDESSES, M. POLIS, M. AMOUROUX (1981), On the identifiability of parameters in a class of parabolic distributed Systems. IEEE Trans. Automat.Control, vol. 26, avril, n° 2. Zbl0487.93016MR613557
- [10] A. EL BADIA, Thèse Université Paul Sabatier, Toulouse (décembre 1985).
- [11] R. COURANT and D. HILBERT (1953), Methods of Math. Phys., vol. I, Interscience, New York. Zbl0051.28802MR65391
- [12] T. SUZUKI (1983), Uniqueness and nonuniqueness in an inverse problem for the parabolic equation. J. of Differential Equations, 47, pp. 296-316. Zbl0519.35077MR688107
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.