Existence et unicité de la solution positive de l'équation TFW sans répulsion électronique

Jean-François Léon

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 4, page 641-654
  • ISSN: 0764-583X

How to cite

top

Léon, Jean-François. "Existence et unicité de la solution positive de l'équation TFW sans répulsion électronique." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.4 (1987): 641-654. <http://eudml.org/doc/193518>.

@article{Léon1987,
author = {Léon, Jean-François},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence; unicity; quasilinear; Thomas-Fermi-von Weisäcker model; asymptotic behaviour},
language = {fre},
number = {4},
pages = {641-654},
publisher = {Dunod},
title = {Existence et unicité de la solution positive de l'équation TFW sans répulsion électronique},
url = {http://eudml.org/doc/193518},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Léon, Jean-François
TI - Existence et unicité de la solution positive de l'équation TFW sans répulsion électronique
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 4
SP - 641
EP - 654
LA - fre
KW - existence; unicity; quasilinear; Thomas-Fermi-von Weisäcker model; asymptotic behaviour
UR - http://eudml.org/doc/193518
ER -

References

top
  1. [1] AMBROSETTI-RABINOWITZ, Dual Variational methods in Critical point Theory and applications. J. of Funct. Anal. 14, 349, 381 (1973). Zbl0273.49063MR370183
  2. [2] BAUMGARTNER, The Thomas-Fermi-Theory as Result of a Strong-Coupling-Limit. Commun. Math. Phys. 47, 215-219 (1976). MR406156
  3. [3] BENGURIA-BREZIS-LIEB, The TFW theory of atoms and molecules. Commun. in Math. Phys. 79, 167, 180 (1981). Zbl0478.49035MR612246
  4. [4] BERESTICKY-LIONS, Non linear scalar field equation part I, II. Arch. for Rat. Mec. and Anal. 82, n° 4, 313, 345 et 347, 375 (1983). Zbl0533.35029
  5. [5] LANDAU and LIFCHITZ, Mécanique Quantique ed. Mir (1971, Moscou). Zbl0148.43806
  6. [6] LIEB, Thomas-Fermi and related theories of atoms and molecules. Rev. of Mod. Phys. 53, n° 4, p.1 October 1981. Zbl1114.81336MR629207
  7. [7] LIEB, Analysis of TFW equation for an infinite atom without electron repulsion. Comm. Math. Phys. 85, p. 15 (1982). Zbl0514.35074MR667764
  8. [8] P. L. LIONS, Some remarks on Hartree equation. Nonlinear Anal. T.M.A. 5 (1981) 1245-1256. Zbl0472.35074MR636734

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.