Asymptotic analysis of two elliptic equations with oscillating terms

Alain Brillard

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 2, page 187-216
  • ISSN: 0764-583X

How to cite

top

Brillard, Alain. "Asymptotic analysis of two elliptic equations with oscillating terms." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.2 (1988): 187-216. <http://eudml.org/doc/193527>.

@article{Brillard1988,
author = {Brillard, Alain},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {homogenization; asymptotic behaviour; epi-convergence methods; Neumann; Dirichlet; sets with holes; highly oscillating parameters},
language = {eng},
number = {2},
pages = {187-216},
publisher = {Dunod},
title = {Asymptotic analysis of two elliptic equations with oscillating terms},
url = {http://eudml.org/doc/193527},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Brillard, Alain
TI - Asymptotic analysis of two elliptic equations with oscillating terms
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 2
SP - 187
EP - 216
LA - eng
KW - homogenization; asymptotic behaviour; epi-convergence methods; Neumann; Dirichlet; sets with holes; highly oscillating parameters
UR - http://eudml.org/doc/193527
ER -

References

top
  1. [1] . A. ADAMS, Sobolev spaces. Academic Press (1975). Zbl0314.46030
  2. [2] . H. ATTOUCH, Variational convergence for fonctions and operators. Applicable Mathematics Series. Pitman (London) 1984. Zbl0561.49012MR773850
  3. [3] H. ATTOUCH, C. PICARD, Variational inequalities with varying obstacles, the general form of the limit problem. J. of Funct. Analysis., 50, pp. 329-386 (1983). MR695419
  4. [4] A. BENSOUSSAN, J. L. LIONS, G. PAPANICOLAOU, Asymptotic analysis for periodic structures. North Holland (Amsterdam) 1978. Zbl0404.35001MR503330
  5. [5] L. BOCCARDO, P. MARCELLINI, Sulla convergenza delle soluzioni di dis-equazioni variazionali. Ann. di Matematica Pura ed Appli. CX, pp. 137-159 (1976). Zbl0333.35030MR425344
  6. [6] H. BREZIS, Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert. North Holland (Amsterdam) 1973. Zbl0252.47055
  7. [7] A. BRILLARD, These de troisième cycle. Orsay (1983). 
  8. [8] A. BRILLARD, Étude du comportement asymptotique de l'écoulement d'un fluide incompressible dans un milieu poreux. Publications AVAMAC 85-11 (1985), and paper to be published. 
  9. [9] D. CIORANESCU, F. MURAT, Un terme étrange venu d'ailleurs. I, II Seminar Coll. de France. Brezis, Lions Ed., tome 60, 70. Pitman (London) 1982. Zbl0496.35030
  10. [10] D. CIORANESCU, J. SAINT JEAN PAULIN, Homogenization in open sets with holes. J. Math. Anal. Appli. 71, pp. 590-607 (1979). Zbl0427.35073MR548785
  11. [11] C. CONCA, On the application of the homogenization theory to a class of problems arising in fluid mechanics. I. Theoretical results. Publications Lab. Ana. Num. Univ. P. M. Curie 1983. 
  12. [12] G. DAL MASO, P. LONGO, T-Limits of obstacles. Annali di Matematica Pura ed Appli. 4 (128), pp. 1-50 (1980). Zbl0467.49004MR640775
  13. [13] E. DE GIORGI, Convergence problems for functionals and operators. Proceedings « Recent Methods in Nonlinear Analysis » Rome, 1978. Pitagora (Roma) 1979. Zbl0405.49001MR533166
  14. [14] E. DE GIORGI, G. LETTA, Une notion de convergence faible pour les fonctions croissantes d'ensembles. Ann. Scuola Norm. Sup. Pisa, 4, pp. 61-99 (1977). Zbl0405.28008MR466479
  15. [15] E. DE GIORGI, S. SPAGNOLO, Sulla convergenza degli intergrali dell' energia Boll. U.M.I., 8, pp. 391-411 (1973). Zbl0274.35002MR348255
  16. [16] I. EKELAND, R. TEMAM, Analyse convexe et problèmes variationnels. Dunod (Paris) 1973. Zbl0281.49001MR463993
  17. [17] C. KURATOWSKI, Topology. Academic Press (New York) 1966. Zbl0158.40802
  18. [18] MARCHENKO, HROUSLOV, Problèmes aux limites dans des domaines avec frontière finement granulée (in russian) Naukova Dumka. Kiev (1974). 
  19. [19] J. RAUCH, M. TAYLOR, Potential and scattering theory on widly perturbed domains J.E.A., 18, pp. 27-59 (1975). Zbl0293.35056MR377303
  20. [20] E. SANCHEZ-PALENCIA, Nonhomogeneous media and vibration theory. Lecture Notes in Physics, Vol. 127, Springer Berlin (1980). Zbl0432.70002MR578345
  21. [21] S. SPAGNOLO, Sulla convegenza di soluzioni di equazioni paraboliche ed ellittiche. Annali. S.N.S. Pisa, 22, pp. 571-597 (1968). Zbl0174.42101MR240443
  22. [22] L. TARTAR, Cours Peccot (1977). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.