Asymptotic analysis of two elliptic equations with oscillating terms

Alain Brillard

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 2, page 187-216
  • ISSN: 0764-583X

How to cite

top

Brillard, Alain. "Asymptotic analysis of two elliptic equations with oscillating terms." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.2 (1988): 187-216. <http://eudml.org/doc/193527>.

@article{Brillard1988,
author = {Brillard, Alain},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {homogenization; asymptotic behaviour; epi-convergence methods; Neumann; Dirichlet; sets with holes; highly oscillating parameters},
language = {eng},
number = {2},
pages = {187-216},
publisher = {Dunod},
title = {Asymptotic analysis of two elliptic equations with oscillating terms},
url = {http://eudml.org/doc/193527},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Brillard, Alain
TI - Asymptotic analysis of two elliptic equations with oscillating terms
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 2
SP - 187
EP - 216
LA - eng
KW - homogenization; asymptotic behaviour; epi-convergence methods; Neumann; Dirichlet; sets with holes; highly oscillating parameters
UR - http://eudml.org/doc/193527
ER -

References

top
  1. [1] . A. ADAMS, Sobolev spaces. Academic Press (1975). Zbl0314.46030
  2. [2] . H. ATTOUCH, Variational convergence for fonctions and operators. Applicable Mathematics Series. Pitman (London) 1984. Zbl0561.49012MR773850
  3. [3] H. ATTOUCH, C. PICARD, Variational inequalities with varying obstacles, the general form of the limit problem. J. of Funct. Analysis., 50, pp. 329-386 (1983). MR695419
  4. [4] A. BENSOUSSAN, J. L. LIONS, G. PAPANICOLAOU, Asymptotic analysis for periodic structures. North Holland (Amsterdam) 1978. Zbl0404.35001MR503330
  5. [5] L. BOCCARDO, P. MARCELLINI, Sulla convergenza delle soluzioni di dis-equazioni variazionali. Ann. di Matematica Pura ed Appli. CX, pp. 137-159 (1976). Zbl0333.35030MR425344
  6. [6] H. BREZIS, Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert. North Holland (Amsterdam) 1973. Zbl0252.47055
  7. [7] A. BRILLARD, These de troisième cycle. Orsay (1983). 
  8. [8] A. BRILLARD, Étude du comportement asymptotique de l'écoulement d'un fluide incompressible dans un milieu poreux. Publications AVAMAC 85-11 (1985), and paper to be published. 
  9. [9] D. CIORANESCU, F. MURAT, Un terme étrange venu d'ailleurs. I, II Seminar Coll. de France. Brezis, Lions Ed., tome 60, 70. Pitman (London) 1982. Zbl0496.35030
  10. [10] D. CIORANESCU, J. SAINT JEAN PAULIN, Homogenization in open sets with holes. J. Math. Anal. Appli. 71, pp. 590-607 (1979). Zbl0427.35073MR548785
  11. [11] C. CONCA, On the application of the homogenization theory to a class of problems arising in fluid mechanics. I. Theoretical results. Publications Lab. Ana. Num. Univ. P. M. Curie 1983. 
  12. [12] G. DAL MASO, P. LONGO, T-Limits of obstacles. Annali di Matematica Pura ed Appli. 4 (128), pp. 1-50 (1980). Zbl0467.49004MR640775
  13. [13] E. DE GIORGI, Convergence problems for functionals and operators. Proceedings « Recent Methods in Nonlinear Analysis » Rome, 1978. Pitagora (Roma) 1979. Zbl0405.49001MR533166
  14. [14] E. DE GIORGI, G. LETTA, Une notion de convergence faible pour les fonctions croissantes d'ensembles. Ann. Scuola Norm. Sup. Pisa, 4, pp. 61-99 (1977). Zbl0405.28008MR466479
  15. [15] E. DE GIORGI, S. SPAGNOLO, Sulla convergenza degli intergrali dell' energia Boll. U.M.I., 8, pp. 391-411 (1973). Zbl0274.35002MR348255
  16. [16] I. EKELAND, R. TEMAM, Analyse convexe et problèmes variationnels. Dunod (Paris) 1973. Zbl0281.49001MR463993
  17. [17] C. KURATOWSKI, Topology. Academic Press (New York) 1966. Zbl0158.40802
  18. [18] MARCHENKO, HROUSLOV, Problèmes aux limites dans des domaines avec frontière finement granulée (in russian) Naukova Dumka. Kiev (1974). 
  19. [19] J. RAUCH, M. TAYLOR, Potential and scattering theory on widly perturbed domains J.E.A., 18, pp. 27-59 (1975). Zbl0293.35056MR377303
  20. [20] E. SANCHEZ-PALENCIA, Nonhomogeneous media and vibration theory. Lecture Notes in Physics, Vol. 127, Springer Berlin (1980). Zbl0432.70002MR578345
  21. [21] S. SPAGNOLO, Sulla convegenza di soluzioni di equazioni paraboliche ed ellittiche. Annali. S.N.S. Pisa, 22, pp. 571-597 (1968). Zbl0174.42101MR240443
  22. [22] L. TARTAR, Cours Peccot (1977). 

NotesEmbed ?

top

You must be logged in to post comments.