Asymptotic behaviour of an elastic body with a surface having small stuck regions

Miguel Lobo; Eugenia Perez

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 4, page 609-624
  • ISSN: 0764-583X

How to cite

top

Lobo, Miguel, and Perez, Eugenia. "Asymptotic behaviour of an elastic body with a surface having small stuck regions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.4 (1988): 609-624. <http://eudml.org/doc/193543>.

@article{Lobo1988,
author = {Lobo, Miguel, Perez, Eugenia},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {critical distance of separation between stuck areas; surface partially stuck to fixed plane; limit behaviour; boundary condition which is intermediate between the perfect stuck and unstuck cases; boundary homogenization problems},
language = {eng},
number = {4},
pages = {609-624},
publisher = {Dunod},
title = {Asymptotic behaviour of an elastic body with a surface having small stuck regions},
url = {http://eudml.org/doc/193543},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Lobo, Miguel
AU - Perez, Eugenia
TI - Asymptotic behaviour of an elastic body with a surface having small stuck regions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 4
SP - 609
EP - 624
LA - eng
KW - critical distance of separation between stuck areas; surface partially stuck to fixed plane; limit behaviour; boundary condition which is intermediate between the perfect stuck and unstuck cases; boundary homogenization problems
UR - http://eudml.org/doc/193543
ER -

References

top
  1. [1] H. ATTOUCH, Variational convergence for functions and operators, Pitman. London (1984). Zbl0561.49012MR773850
  2. [2] A. BRILLARD, M. LOBO, E. PEREZ, Homogénéisation de frontières par épi-convergence en élasticité linéaire. (A paraître). Zbl0691.73013
  3. [3] D. CIORANESCU, F. MURAT, Un terme étrange venu d'ailleurs. Collège de France Seminar, Research Notes in Mathematics, Pitman, London, (1982)n° 60, p. 98-138, n° 70, pp. 154-178. Zbl0496.35030
  4. [4] J. DENY, Sur la convergence de certaines intégrales de la théorie du potentiel. Arch. Math. Vol. V, (1954), p. 367-371. Zbl0057.33104MR66513
  5. [5] G. DUVAUT, J. L. LIONS, Les inéquations en mécanique et en physique. Dunod. Paris (1972). Zbl0298.73001MR464857
  6. [6] W. ECKHAUS, Asymptotic Analysis and Singular Pertubations, North-Hoïland, Amsterdam (1979). Zbl0421.34057MR553107
  7. [7] O. A. LADYZHENSKAY, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach. London (1969). Zbl0184.52603MR254401
  8. [8] L. LANDAU, E. LIFCHITZ, Théorie de l'Elasticité. Mir. Moscou (1967). Zbl0166.43101
  9. [9] J. L. LIONS, E. MAGENES, Problèmes aux limites non homogènes et applications. Vol. I. Dunod, Paris (1968). Zbl0165.10801
  10. [10] M. LOBO, E. PEREZ, Comportement asymptotique d'un corps élastique dont une surface présente de petites zones de collage. C.R. Acad. Se. Paris, t. 304, Série II n° 5, 1987. Zbl0602.73019MR977600
  11. [11] R.C. Mac CAMY, E. STEPHAN, Solution Procedures for Three-Dimensional Eddy Current Problems. J. Math. Anal. Appl. 101 (1984), 348-379. Zbl0563.35054MR748577
  12. [12] F. MURAT, Neumann's Sieve. Proceedings of the meeting on variational methods in nonlinear analysis, Isle of Elba 1983. Research Notes in Mathematics,° 127 Pitman, London, 1985. Zbl0586.35037MR807534
  13. [13] C. PICARD, Analyse limite d'équations variationnelles dans un domaine contenant une grille. Thèse d'Etat. Université de Paris-Sud. Orsay (1984). 
  14. [14] E. SANCHEZ-PALENCIA, Boundary value problems in domains containing Perforated walls. In Nonlinear Differential Equations, Collège de France Seminar, Vol. III, Research Notes in Mathematics, 70, p. 309-325, Pitman, London (1982). Zbl0505.35020MR670282
  15. [15] J. SANCHEZ-HUBERT, E. SANCHEZ-PALENCIA, Acoustic fiuid flow through holes and permeability of perforated walls. Jour. Math. Anal. Appl., 87, (1982) p. 427-453. Zbl0484.76101MR658023
  16. [16] I.N. SNEDDON, Fourier transforms, McGraw-Hill. London (1951). Zbl0038.26801MR41963
  17. [17] R. TEMAM, Problèmes mathématiques en plasticité. Gauthier-Villars. Paris (1983). Zbl0547.73026MR711964

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.