Everted equilibria of a spherical cap : a singular perturbation method

Andréa Schiaffino; Vanda Valente

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 1, page 179-187
  • ISSN: 0764-583X

How to cite

top

Schiaffino, Andréa, and Valente, Vanda. "Everted equilibria of a spherical cap : a singular perturbation method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.1 (1989): 179-187. <http://eudml.org/doc/193551>.

@article{Schiaffino1989,
author = {Schiaffino, Andréa, Valente, Vanda},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Taylor expansion; axially symmetric equilibria; thin spherical cap; branch of solutions depending on a parameter},
language = {eng},
number = {1},
pages = {179-187},
publisher = {Dunod},
title = {Everted equilibria of a spherical cap : a singular perturbation method},
url = {http://eudml.org/doc/193551},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Schiaffino, Andréa
AU - Valente, Vanda
TI - Everted equilibria of a spherical cap : a singular perturbation method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 1
SP - 179
EP - 187
LA - eng
KW - Taylor expansion; axially symmetric equilibria; thin spherical cap; branch of solutions depending on a parameter
UR - http://eudml.org/doc/193551
ER -

References

top
  1. [1] P. PODIO-GUIDUGLI, M. ROSATI, A. SCHIAFFINO and V. VALENTE, Equilibrium of an elastic spherical cap pulled at the rim (1987), to appear on S.I.A.M. J. of Appi. Math. Zbl0724.73101MR990870
  2. [2] L. S. SRUBSHCHIK, On the asymptotic integration of a System of nonlinear equations of plate theory, Appl. Math. Mech., Trans. PMM 27, 335-349 (1964). Zbl0148.19902MR182205
  3. [3] W. ECKHAUS, Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam (1979). Zbl0421.34057MR553107
  4. [4] K. W. CHANG, F. A. HOWES, Nonlinear Singular Perturbation Phenomena :Theory and Application, Applied Math. Sciences n. 56, Springer-Verlag (1984). Zbl0559.34013MR764395
  5. [5] M. S. BERGER, L. E. FRAENKEL, On singular perturbations of nonlinear operator equations, Indiana Univ. Math. Journ. 20, 623-631 (1971). Zbl0218.47031MR271779

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.