Everted equilibria of a spherical cap : a singular perturbation method
Andréa Schiaffino; Vanda Valente
- Volume: 23, Issue: 1, page 179-187
- ISSN: 0764-583X
Access Full Article
topHow to cite
topSchiaffino, Andréa, and Valente, Vanda. "Everted equilibria of a spherical cap : a singular perturbation method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.1 (1989): 179-187. <http://eudml.org/doc/193551>.
@article{Schiaffino1989,
author = {Schiaffino, Andréa, Valente, Vanda},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Taylor expansion; axially symmetric equilibria; thin spherical cap; branch of solutions depending on a parameter},
language = {eng},
number = {1},
pages = {179-187},
publisher = {Dunod},
title = {Everted equilibria of a spherical cap : a singular perturbation method},
url = {http://eudml.org/doc/193551},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Schiaffino, Andréa
AU - Valente, Vanda
TI - Everted equilibria of a spherical cap : a singular perturbation method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 1
SP - 179
EP - 187
LA - eng
KW - Taylor expansion; axially symmetric equilibria; thin spherical cap; branch of solutions depending on a parameter
UR - http://eudml.org/doc/193551
ER -
References
top- [1] P. PODIO-GUIDUGLI, M. ROSATI, A. SCHIAFFINO and V. VALENTE, Equilibrium of an elastic spherical cap pulled at the rim (1987), to appear on S.I.A.M. J. of Appi. Math. Zbl0724.73101MR990870
- [2] L. S. SRUBSHCHIK, On the asymptotic integration of a System of nonlinear equations of plate theory, Appl. Math. Mech., Trans. PMM 27, 335-349 (1964). Zbl0148.19902MR182205
- [3] W. ECKHAUS, Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam (1979). Zbl0421.34057MR553107
- [4] K. W. CHANG, F. A. HOWES, Nonlinear Singular Perturbation Phenomena :Theory and Application, Applied Math. Sciences n. 56, Springer-Verlag (1984). Zbl0559.34013MR764395
- [5] M. S. BERGER, L. E. FRAENKEL, On singular perturbations of nonlinear operator equations, Indiana Univ. Math. Journ. 20, 623-631 (1971). Zbl0218.47031MR271779
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.