Attractor for a Navier-Stokes flow in an unbounded domain
- Volume: 23, Issue: 3, page 359-370
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAbergel, F.. "Attractor for a Navier-Stokes flow in an unbounded domain." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 359-370. <http://eudml.org/doc/193564>.
@article{Abergel1989,
author = {Abergel, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Navier-Stokes equations; global attractor of finite fractal dimension; unbounded domain; existence of a global attractor},
language = {eng},
number = {3},
pages = {359-370},
publisher = {Dunod},
title = {Attractor for a Navier-Stokes flow in an unbounded domain},
url = {http://eudml.org/doc/193564},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Abergel, F.
TI - Attractor for a Navier-Stokes flow in an unbounded domain
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 359
EP - 370
LA - eng
KW - Navier-Stokes equations; global attractor of finite fractal dimension; unbounded domain; existence of a global attractor
UR - http://eudml.org/doc/193564
ER -
References
top- [A] F. ABERGEL, Existence and Finite Dimensionality of the Global attractor for Some Evolution Equations on Unbounded Domains, to appear in J. Diff. Equations. Zbl0706.35058
- [C-F] P. CONSTANTIN, C. FOIAS, Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations Comm. Pure Appl. Math. 38 (1985), pp 1-27. Zbl0582.35092MR768102
- [C-F-T (1)] P. CONSTANTIN, C. FOIAS, R. TEMAM, Attractors Representing Turbulent Flows, Memoirs of A. M. S., vol. 53, 314 (1985). Zbl0567.35070MR776345
- [F-T] C. FOIAS, R. TEMAM, Some Analytic and Geometric Properties of the Solutions of the Evolution Navier-Stokes Equations, J. Math., Pures et Appl., 58 (1979), pp 334-268. Zbl0454.35073MR544257
- [G-M-T] J. M. GHIDAGLIA, M. MARION, R. TEMAM, Generalization of the Sobolev-Lieb-Thirring Inequalities and Application to the Dimension of the Attractor, Differential and Integral Equations, 1 (1988), pp 1-21. Zbl0745.46037MR920485
- [H] J. K. HALE, Asymptotic Behavior of Dissipative Systems, A. M. S0 Mathematical Surveys and Monographs, vol. 25 (1988). Zbl0642.58013MR941371
- [H-L-P] G. H. HARDY, J. E. LITTLEWOOD, G. PÓLYA, Inequalities, Cambridge University Press, London (1934). Zbl0010.10703JFM60.0169.01
- [L-T] E. LIEB, W. THIRRING, Inequalities for the Moments of the Schroedinger Equations and Their Relation to Sobolev Inequalities, Studies in Mathematical Physics Essays in Honor of Valentine Bergman, E. Lieb, B. Simon, A. S. Wightman, Editors, Princeton Umversity Press, Princeton, New Jersey (1976), pp 269-303. Zbl0342.35044
- [Tl] R. TEMAM, Navier-Stokes Equations, 3rd edition, North Holland, Amsterdam (1984). MR769654
- [T2] R. TEMAM, Infinite Dimensional Systems in Mechanics and Physics, Springer Verlag, Berlin, Heidelberg, New York (1988). Zbl0662.35001MR953967
- [C-F-T (2)] P. CONSTANTIN, C. FOIAS, R. TEMAM, to appear in Physica D.
- [F-M-T] C. FOIAS, O. P. MANLEY, R. TEMAM, Attractors for the Bénard Problem Existence and Physical Bounds on their Fractal Dimension, Nonlinear Analysis, Theory, Methods and Applications, 11, n° 8 (1987), pp 939-967. Zbl0646.76098MR903787
- [L-M] J. L. LIONS, E. MAGENES, Problemes aux Limites Non Homogenes et Applications, vol. 1, Dunod Paris (1968). Zbl0165.10801MR247243
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.