Attractor for a Navier-Stokes flow in an unbounded domain

F. Abergel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 359-370
  • ISSN: 0764-583X

How to cite

top

Abergel, F.. "Attractor for a Navier-Stokes flow in an unbounded domain." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 359-370. <http://eudml.org/doc/193564>.

@article{Abergel1989,
author = {Abergel, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Navier-Stokes equations; global attractor of finite fractal dimension; unbounded domain; existence of a global attractor},
language = {eng},
number = {3},
pages = {359-370},
publisher = {Dunod},
title = {Attractor for a Navier-Stokes flow in an unbounded domain},
url = {http://eudml.org/doc/193564},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Abergel, F.
TI - Attractor for a Navier-Stokes flow in an unbounded domain
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 359
EP - 370
LA - eng
KW - Navier-Stokes equations; global attractor of finite fractal dimension; unbounded domain; existence of a global attractor
UR - http://eudml.org/doc/193564
ER -

References

top
  1. [A] F. ABERGEL, Existence and Finite Dimensionality of the Global attractor for Some Evolution Equations on Unbounded Domains, to appear in J. Diff. Equations. Zbl0706.35058
  2. [C-F] P. CONSTANTIN, C. FOIAS, Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations Comm. Pure Appl. Math. 38 (1985), pp 1-27. Zbl0582.35092MR768102
  3. [C-F-T (1)] P. CONSTANTIN, C. FOIAS, R. TEMAM, Attractors Representing Turbulent Flows, Memoirs of A. M. S., vol. 53, 314 (1985). Zbl0567.35070MR776345
  4. [F-T] C. FOIAS, R. TEMAM, Some Analytic and Geometric Properties of the Solutions of the Evolution Navier-Stokes Equations, J. Math., Pures et Appl., 58 (1979), pp 334-268. Zbl0454.35073MR544257
  5. [G-M-T] J. M. GHIDAGLIA, M. MARION, R. TEMAM, Generalization of the Sobolev-Lieb-Thirring Inequalities and Application to the Dimension of the Attractor, Differential and Integral Equations, 1 (1988), pp 1-21. Zbl0745.46037MR920485
  6. [H] J. K. HALE, Asymptotic Behavior of Dissipative Systems, A. M. S0 Mathematical Surveys and Monographs, vol. 25 (1988). Zbl0642.58013MR941371
  7. [H-L-P] G. H. HARDY, J. E. LITTLEWOOD, G. PÓLYA, Inequalities, Cambridge University Press, London (1934). Zbl0010.10703JFM60.0169.01
  8. [L-T] E. LIEB, W. THIRRING, Inequalities for the Moments of the Schroedinger Equations and Their Relation to Sobolev Inequalities, Studies in Mathematical Physics Essays in Honor of Valentine Bergman, E. Lieb, B. Simon, A. S. Wightman, Editors, Princeton Umversity Press, Princeton, New Jersey (1976), pp 269-303. Zbl0342.35044
  9. [Tl] R. TEMAM, Navier-Stokes Equations, 3rd edition, North Holland, Amsterdam (1984). MR769654
  10. [T2] R. TEMAM, Infinite Dimensional Systems in Mechanics and Physics, Springer Verlag, Berlin, Heidelberg, New York (1988). Zbl0662.35001MR953967
  11. [C-F-T (2)] P. CONSTANTIN, C. FOIAS, R. TEMAM, to appear in Physica D. 
  12. [F-M-T] C. FOIAS, O. P. MANLEY, R. TEMAM, Attractors for the Bénard Problem Existence and Physical Bounds on their Fractal Dimension, Nonlinear Analysis, Theory, Methods and Applications, 11, n° 8 (1987), pp 939-967. Zbl0646.76098MR903787
  13. [L-M] J. L. LIONS, E. MAGENES, Problemes aux Limites Non Homogenes et Applications, vol. 1, Dunod Paris (1968). Zbl0165.10801MR247243

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.