Nonequilibrium reaction-diffusion structures in rigid and visco-elastic media : knots and unstable noninertial flows

Peter J. Ortoleva

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 507-517
  • ISSN: 0764-583X

How to cite

top

Ortoleva, Peter J.. "Nonequilibrium reaction-diffusion structures in rigid and visco-elastic media : knots and unstable noninertial flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 507-517. <http://eudml.org/doc/193575>.

@article{Ortoleva1989,
author = {Ortoleva, Peter J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {viscoelastic media; unstable noninertial flows; simple reaction-diffusion model; reaction-transport problems; constant concentration; existence of knotted solutions; variational theorem; strictly three dimensional solutions; critical Taylor shear rate},
language = {eng},
number = {3},
pages = {507-517},
publisher = {Dunod},
title = {Nonequilibrium reaction-diffusion structures in rigid and visco-elastic media : knots and unstable noninertial flows},
url = {http://eudml.org/doc/193575},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Ortoleva, Peter J.
TI - Nonequilibrium reaction-diffusion structures in rigid and visco-elastic media : knots and unstable noninertial flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 507
EP - 517
LA - eng
KW - viscoelastic media; unstable noninertial flows; simple reaction-diffusion model; reaction-transport problems; constant concentration; existence of knotted solutions; variational theorem; strictly three dimensional solutions; critical Taylor shear rate
UR - http://eudml.org/doc/193575
ER -

References

top
  1. [1] P. ORTOLEVA, Knots and tangles in Reaction Diffusion Systems (to appear in JIMA). 
  2. [2] R. SULTAN and P. ORTOLEVA, J. Chem. Phys. 84, 6781 (1986). 
  3. [3] R. SULTAN and P. ORTOLEVA, J. Chem. Phys. 85, 5068 (1986). 
  4. [4] C. H. CHENG and P. ORTOLEVA, « Knots in Reaction-Diffusion Systems with Folded Slow Manifolds » (in preparation); 
  5. P. Ortoleva, The Variety and Structure of Chemical Waves (Manchester Umversity Press, 1989). 
  6. [5] T. DEWERS and P. ORTOLEVA, Mechano-Chemical Coupling via Texture Dependent Solubility in Stressed Rocks (Geochimica Cosmochimica Acta) (submitted for publication). 
  7. [6] T. DEWERS and P. ORTOLEVA, Geochemical Self-Organization III : A Mean Field, Pressure Solution Model of Spaced Cleavage and Metamorphic Seg-regational Layering (to appear in the Am. Jour, of Sci.). 
  8. [7] C. WEI and P. ORTOLEVA, A Linear Stability Analyses of a Visco-Elastic Model of Metamorphic Differentiation (in préparation). 
  9. [8] P. ORTOLEVA (1988), Geochemical Self-Organization (Oxford University Press, N. Y.). 
  10. [9] C. WEI and P. ORTOLEVA, Numerical Simulation of Metamorphic Differentiation in Two Spatial Dimensions (in préparation). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.