Nonequilibrium reaction-diffusion structures in rigid and visco-elastic media : knots and unstable noninertial flows

Peter J. Ortoleva

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 507-517
  • ISSN: 0764-583X

How to cite

top

Ortoleva, Peter J.. "Nonequilibrium reaction-diffusion structures in rigid and visco-elastic media : knots and unstable noninertial flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 507-517. <http://eudml.org/doc/193575>.

@article{Ortoleva1989,
author = {Ortoleva, Peter J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {viscoelastic media; unstable noninertial flows; simple reaction-diffusion model; reaction-transport problems; constant concentration; existence of knotted solutions; variational theorem; strictly three dimensional solutions; critical Taylor shear rate},
language = {eng},
number = {3},
pages = {507-517},
publisher = {Dunod},
title = {Nonequilibrium reaction-diffusion structures in rigid and visco-elastic media : knots and unstable noninertial flows},
url = {http://eudml.org/doc/193575},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Ortoleva, Peter J.
TI - Nonequilibrium reaction-diffusion structures in rigid and visco-elastic media : knots and unstable noninertial flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 507
EP - 517
LA - eng
KW - viscoelastic media; unstable noninertial flows; simple reaction-diffusion model; reaction-transport problems; constant concentration; existence of knotted solutions; variational theorem; strictly three dimensional solutions; critical Taylor shear rate
UR - http://eudml.org/doc/193575
ER -

References

top
  1. [1] P. ORTOLEVA, Knots and tangles in Reaction Diffusion Systems (to appear in JIMA). 
  2. [2] R. SULTAN and P. ORTOLEVA, J. Chem. Phys. 84, 6781 (1986). 
  3. [3] R. SULTAN and P. ORTOLEVA, J. Chem. Phys. 85, 5068 (1986). 
  4. [4] C. H. CHENG and P. ORTOLEVA, « Knots in Reaction-Diffusion Systems with Folded Slow Manifolds » (in preparation); 
  5. P. Ortoleva, The Variety and Structure of Chemical Waves (Manchester Umversity Press, 1989). 
  6. [5] T. DEWERS and P. ORTOLEVA, Mechano-Chemical Coupling via Texture Dependent Solubility in Stressed Rocks (Geochimica Cosmochimica Acta) (submitted for publication). 
  7. [6] T. DEWERS and P. ORTOLEVA, Geochemical Self-Organization III : A Mean Field, Pressure Solution Model of Spaced Cleavage and Metamorphic Seg-regational Layering (to appear in the Am. Jour, of Sci.). 
  8. [7] C. WEI and P. ORTOLEVA, A Linear Stability Analyses of a Visco-Elastic Model of Metamorphic Differentiation (in préparation). 
  9. [8] P. ORTOLEVA (1988), Geochemical Self-Organization (Oxford University Press, N. Y.). 
  10. [9] C. WEI and P. ORTOLEVA, Numerical Simulation of Metamorphic Differentiation in Two Spatial Dimensions (in préparation). 

NotesEmbed ?

top

You must be logged in to post comments.