The local projection P 0 - P 1 -discontinuous-Galerkin finite element method for scalar conservation laws

Guy Chavent; Bernardo Cockburn

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 4, page 565-592
  • ISSN: 0764-583X

How to cite

top

Chavent, Guy, and Cockburn, Bernardo. "The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.4 (1989): 565-592. <http://eudml.org/doc/193579>.

@article{Chavent1989,
author = {Chavent, Guy, Cockburn, Bernardo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {local projection; Galerkin finite element method; scalar conservation laws; Godunov scheme},
language = {eng},
number = {4},
pages = {565-592},
publisher = {Dunod},
title = {The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws},
url = {http://eudml.org/doc/193579},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Chavent, Guy
AU - Cockburn, Bernardo
TI - The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 4
SP - 565
EP - 592
LA - eng
KW - local projection; Galerkin finite element method; scalar conservation laws; Godunov scheme
UR - http://eudml.org/doc/193579
ER -

References

top
  1. [1] Y. BRENIER and S. OSHER, Approximate Riemman Solvers and Numerical Flux Functions, ICASE report n° 84-63 (1984). Zbl0597.65071
  2. [2] G. CHAVENT and B. COCKBURN, Convergence et Stabilité des Schémas LRG, INRIA report. 
  3. [3] G. CHAVENT and G. SALZANO, A finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comp. Phys., 45 (1982), pp. 307-344. Zbl0489.76106MR666166
  4. [4] B. COCKBURN, Le Schéma G-k/2 pour les Lois de Conservation Scalaires, Congrès National d'Analyse Numérique (1984), pp. 53-56. 
  5. [5] B. COCKBURN, The Quasi-Monotone schemes for Scalar Conservation Laws, IMA Preprint Séries n° 263, 268 and 277. To appear in SIAM J. Numer. Anal. MR1025091
  6. [6] A. HARTEN, On a class of high-resolution total-variation-stable finite-differene schemes, SIAM J. Numer. AnaL, 21 (1984), pp. 1-23. Zbl0547.65062MR731210
  7. [7] C. JOHNSON and J. PITKARANTA, An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation, Math, of Comp., 46 (1986), pp.1-26. Zbl0618.65105MR815828
  8. [8] A. Y. LEROUX, A Numerical Conception of Entropy for Quasi-Linear Equations, Math. of Comp., 31 (1977), pp. 848-872. Zbl0378.65053MR478651
  9. [9] P. LESAINT and P. A. RAVIART, On a Finite Element Method for Solving the Neutron Transport Equation, Mathematical Aspects of Finite Element in Partial Differential Equations, Academic Press, Ed. Carl de Boor, pp. 89-145. Zbl0341.65076
  10. [10] S. OSHER, Convergence of Generalized MUSCL Schemes, SIAM J. Numer. Anal., 22 (1984), pp. 947-961. Zbl0627.35061MR799122
  11. [11] S. OSHER, Riemman Solvers, the Entropy Condition and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. Zbl0592.65069MR736327
  12. [12] E. TADMOR, Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes, Math. Comp., 43 (1984), pp. 369-381. Zbl0587.65058MR758189
  13. [13] B. VAN LEER, Towards the Ultimate Conservative Scheme, II Monotonicity and Conservation Combined in a Second Order Scheme, J. Comput. Phys., 14 (1974), pp. 361-370. Zbl0276.65055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.