The local projection -discontinuous-Galerkin finite element method for scalar conservation laws
Guy Chavent; Bernardo Cockburn
- Volume: 23, Issue: 4, page 565-592
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChavent, Guy, and Cockburn, Bernardo. "The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.4 (1989): 565-592. <http://eudml.org/doc/193579>.
@article{Chavent1989,
author = {Chavent, Guy, Cockburn, Bernardo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {local projection; Galerkin finite element method; scalar conservation laws; Godunov scheme},
language = {eng},
number = {4},
pages = {565-592},
publisher = {Dunod},
title = {The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws},
url = {http://eudml.org/doc/193579},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Chavent, Guy
AU - Cockburn, Bernardo
TI - The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 4
SP - 565
EP - 592
LA - eng
KW - local projection; Galerkin finite element method; scalar conservation laws; Godunov scheme
UR - http://eudml.org/doc/193579
ER -
References
top- [1] Y. BRENIER and S. OSHER, Approximate Riemman Solvers and Numerical Flux Functions, ICASE report n° 84-63 (1984). Zbl0597.65071
- [2] G. CHAVENT and B. COCKBURN, Convergence et Stabilité des Schémas LRG, INRIA report.
- [3] G. CHAVENT and G. SALZANO, A finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comp. Phys., 45 (1982), pp. 307-344. Zbl0489.76106MR666166
- [4] B. COCKBURN, Le Schéma G-k/2 pour les Lois de Conservation Scalaires, Congrès National d'Analyse Numérique (1984), pp. 53-56.
- [5] B. COCKBURN, The Quasi-Monotone schemes for Scalar Conservation Laws, IMA Preprint Séries n° 263, 268 and 277. To appear in SIAM J. Numer. Anal. MR1025091
- [6] A. HARTEN, On a class of high-resolution total-variation-stable finite-differene schemes, SIAM J. Numer. AnaL, 21 (1984), pp. 1-23. Zbl0547.65062MR731210
- [7] C. JOHNSON and J. PITKARANTA, An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation, Math, of Comp., 46 (1986), pp.1-26. Zbl0618.65105MR815828
- [8] A. Y. LEROUX, A Numerical Conception of Entropy for Quasi-Linear Equations, Math. of Comp., 31 (1977), pp. 848-872. Zbl0378.65053MR478651
- [9] P. LESAINT and P. A. RAVIART, On a Finite Element Method for Solving the Neutron Transport Equation, Mathematical Aspects of Finite Element in Partial Differential Equations, Academic Press, Ed. Carl de Boor, pp. 89-145. Zbl0341.65076
- [10] S. OSHER, Convergence of Generalized MUSCL Schemes, SIAM J. Numer. Anal., 22 (1984), pp. 947-961. Zbl0627.35061MR799122
- [11] S. OSHER, Riemman Solvers, the Entropy Condition and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. Zbl0592.65069MR736327
- [12] E. TADMOR, Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes, Math. Comp., 43 (1984), pp. 369-381. Zbl0587.65058MR758189
- [13] B. VAN LEER, Towards the Ultimate Conservative Scheme, II Monotonicity and Conservation Combined in a Second Order Scheme, J. Comput. Phys., 14 (1974), pp. 361-370. Zbl0276.65055
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.