Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodique/non périodique

Hervé Vandeven

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 4, page 649-688
  • ISSN: 0764-583X

How to cite

top

Vandeven, Hervé. "Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodique/non périodique." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.4 (1989): 649-688. <http://eudml.org/doc/193584>.

@article{Vandeven1989,
author = {Vandeven, Hervé},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {compatibility problem; discrete spaces; spectral approximations; Stokes problem},
language = {fre},
number = {4},
pages = {649-688},
publisher = {Dunod},
title = {Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodique/non périodique},
url = {http://eudml.org/doc/193584},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Vandeven, Hervé
TI - Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodique/non périodique
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 4
SP - 649
EP - 688
LA - fre
KW - compatibility problem; discrete spaces; spectral approximations; Stokes problem
UR - http://eudml.org/doc/193584
ER -

References

top
  1. [1] C. BERNARDI, C. CANUTO & Y. MADAY, Generalized Inf-Sup Conditionfor Chebyshev Approximation of the Navier-Stokes Equations, à paraître dans SIAM J. Numer. Anal. Zbl0666.76055
  2. [2] C. BERNARDI, Y. MADAY & B. MÉTIVET, Spectral Approximation of the Periodic Nonperiodic Navier-Stokes Equations (to appear in Numer. Math.). Zbl0583.65085MR914344
  3. [3] C. BERNARDI, Y. MADAY & B. MÉTIVET, Calcul de la pression dans la résolution spectrale du problème de Stokes, La Recherche Aérospatiale 1 (1987), 1-21. Zbl0642.76037MR904608
  4. [4] F. BREZZI, On the Existence, Uniqueness and Approximation of Saddle-Point problems Arising from Lagrange Multipliers, RAIRO Anal. Numér. 8 (1974), 129-151. Zbl0338.90047MR365287
  5. [5] C. CANUTO & A. QUARTERONI, Approximation Results for Orthogonal Potynomials in Sobolev Spaces, Math, of Comp. 38 (1981), 67-86. Zbl0567.41008MR637287
  6. [6] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI & T. A. ZANG, Spectral Methods in Fluid Dynamics, Springer-Verlag in press (1987). Zbl0658.76001MR917480
  7. [7] P. J. DAVIS & P. RABINOWITZ, Methods of Numerical Integration, Academic Press (1985). Zbl0537.65020MR760629
  8. [8] V. GIRAULT & P.-A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag (1986). Zbl0413.65081MR851383
  9. [9] M. R. MALIK, T. A. ZANG & M. Y. HUSSAINI, A Spectral Collocation Method for the Navier-Stokes Equations, Icase Report n° 84-19 (1984). Zbl0573.76036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.