A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver

Lin Bo Zhang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 1, page 133-150
  • ISSN: 0764-583X

How to cite

top

Zhang, Lin Bo. "A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.1 (1990): 133-150. <http://eudml.org/doc/193586>.

@article{Zhang1990,
author = {Zhang, Lin Bo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {second-order finite difference scheme; steady Navier-Stokes equations; driven cavity; staggered grid; second-order centered differences; backward differences; global second-order scheme; discretized nonlinear system; multigrid method},
language = {eng},
number = {1},
pages = {133-150},
publisher = {Dunod},
title = {A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver},
url = {http://eudml.org/doc/193586},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Zhang, Lin Bo
TI - A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 1
SP - 133
EP - 150
LA - eng
KW - second-order finite difference scheme; steady Navier-Stokes equations; driven cavity; staggered grid; second-order centered differences; backward differences; global second-order scheme; discretized nonlinear system; multigrid method
UR - http://eudml.org/doc/193586
ER -

References

top
  1. [1] J. D. BOZEMAN & C. DALTON, Numerical Study of Viscous Flow in a Cavity, J. of Comp. Phys., 12, 1973, pp. 348-363. Zbl0261.76024
  2. [2] A. BRANDT& N. DINAR, Multigrid Solutions to Elliptic Flow Problems, Numerical Method IN PDEs, Ed. S. V. Parter, Academic Press, New York, 1977, pp. 53-147. Zbl0447.76020MR558216
  3. [3] Ch. H. BRUNEAU& C. JOURON, Efficient Schemes for Solving Steady Navier-Stokes Equations, to appear. Zbl0699.76034
  4. [4] M. FORTIN, R. PEYRET& R. TEMAM, Résolution Numérique des Équations de Navier-Stokes pour un Fluide Incompressible, Journal de Mécanique, Vol. 10 N°3, septembre 1971. Zbl0225.76016MR421338
  5. [5] U. GHIA, K. N. GHIA& C. T. SHIN, High-Re Solutions for Incompressible Flows Using the Navier-Stokes Equations and a Multigrid Method, J. of Comp. Phys., 48, 1982, pp. 387-411. Zbl0511.76031
  6. [6] R. SCHREIBER& H. B. KELLER, Driven Cavity Flows by Efficient Numerical Techniques, J. of Comp. Phys., 49, 1983, pp. 310-333. Zbl0503.76040
  7. [7] S. Y. TUANN& M. D. OLSON, Review of Computational Methods for Recirculating Flows, J. of Comp. Phys., 29, 1978, pp. 1-19. Zbl0427.76028MR510458
  8. [8] S. P. VANKA, Block Implicit Multigrid Solutions of Navier-Stokes Equations in Primitive Variables, J. of Comp. Phys., 65, 1985, pp. 138-158. Zbl0606.76035MR848451
  9. [9] L. B. ZHANG, Résolution Numérique des Équation de Navier-Stokes par la Méthode multigrille, University Thesis, Orsay, 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.