A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver

Lin Bo Zhang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 1, page 133-150
  • ISSN: 0764-583X

How to cite

top

Zhang, Lin Bo. "A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.1 (1990): 133-150. <http://eudml.org/doc/193586>.

@article{Zhang1990,
author = {Zhang, Lin Bo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {second-order finite difference scheme; steady Navier-Stokes equations; driven cavity; staggered grid; second-order centered differences; backward differences; global second-order scheme; discretized nonlinear system; multigrid method},
language = {eng},
number = {1},
pages = {133-150},
publisher = {Dunod},
title = {A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver},
url = {http://eudml.org/doc/193586},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Zhang, Lin Bo
TI - A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 1
SP - 133
EP - 150
LA - eng
KW - second-order finite difference scheme; steady Navier-Stokes equations; driven cavity; staggered grid; second-order centered differences; backward differences; global second-order scheme; discretized nonlinear system; multigrid method
UR - http://eudml.org/doc/193586
ER -

References

top
  1. [1] J. D. BOZEMAN & C. DALTON, Numerical Study of Viscous Flow in a Cavity, J. of Comp. Phys., 12, 1973, pp. 348-363. Zbl0261.76024
  2. [2] A. BRANDT& N. DINAR, Multigrid Solutions to Elliptic Flow Problems, Numerical Method IN PDEs, Ed. S. V. Parter, Academic Press, New York, 1977, pp. 53-147. Zbl0447.76020MR558216
  3. [3] Ch. H. BRUNEAU& C. JOURON, Efficient Schemes for Solving Steady Navier-Stokes Equations, to appear. Zbl0699.76034
  4. [4] M. FORTIN, R. PEYRET& R. TEMAM, Résolution Numérique des Équations de Navier-Stokes pour un Fluide Incompressible, Journal de Mécanique, Vol. 10 N°3, septembre 1971. Zbl0225.76016MR421338
  5. [5] U. GHIA, K. N. GHIA& C. T. SHIN, High-Re Solutions for Incompressible Flows Using the Navier-Stokes Equations and a Multigrid Method, J. of Comp. Phys., 48, 1982, pp. 387-411. Zbl0511.76031
  6. [6] R. SCHREIBER& H. B. KELLER, Driven Cavity Flows by Efficient Numerical Techniques, J. of Comp. Phys., 49, 1983, pp. 310-333. Zbl0503.76040
  7. [7] S. Y. TUANN& M. D. OLSON, Review of Computational Methods for Recirculating Flows, J. of Comp. Phys., 29, 1978, pp. 1-19. Zbl0427.76028MR510458
  8. [8] S. P. VANKA, Block Implicit Multigrid Solutions of Navier-Stokes Equations in Primitive Variables, J. of Comp. Phys., 65, 1985, pp. 138-158. Zbl0606.76035MR848451
  9. [9] L. B. ZHANG, Résolution Numérique des Équation de Navier-Stokes par la Méthode multigrille, University Thesis, Orsay, 1987. 

NotesEmbed ?

top

You must be logged in to post comments.