Théorie de la pénalisation exacte

Joseph Frédéric Bonnans

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 2, page 197-210
  • ISSN: 0764-583X

How to cite

top

Bonnans, Joseph Frédéric. "Théorie de la pénalisation exacte." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.2 (1990): 197-210. <http://eudml.org/doc/193594>.

@article{Bonnans1990,
author = {Bonnans, Joseph Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {constrained optimization; globalization of algorithms; exact penalty functions; normality theory; weak second-order sufficient conditions},
language = {fre},
number = {2},
pages = {197-210},
publisher = {Dunod},
title = {Théorie de la pénalisation exacte},
url = {http://eudml.org/doc/193594},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Bonnans, Joseph Frédéric
TI - Théorie de la pénalisation exacte
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 2
SP - 197
EP - 210
LA - fre
KW - constrained optimization; globalization of algorithms; exact penalty functions; normality theory; weak second-order sufficient conditions
UR - http://eudml.org/doc/193594
ER -

References

top
  1. [1] M. S. BAZARAA, J. J. GOODE, Sufficient conditions for a globally exact penalty function without convexity, Math. Programming Study 19, 1-15, 1982. Zbl0497.90058MR669723
  2. [2] A. BEN-TAL, Second order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 143-165, 1980. Zbl0416.90062MR600379
  3. [3] D. P. BERTSEKAS, Necessary and sufficient conditions for a penalty method to be exact, Math. Programming 9, 87-99, 1975. Zbl0325.90055MR384144
  4. [4] D. P. BERTSEKAS, Constrained optimization and Lagrange multiplier methods,Academic Press, New York, 1982. Zbl0572.90067MR690767
  5. [5] J. F. BONNANS, Asymptotic stability of the unit stepsize in exact penalty methods,SIAM J. Cont. Optimiz. 27, 631-641, 1989. Zbl0678.90068MR993290
  6. [6] J. F. BONNANS, Augmentability and exact penalisability in nonlinear programming under a weak second-order sufficiency condition, in rapport INRIA n° 548, 1986. 
  7. [7] J. F. BONNANS, D. GABAY, Une extension de la programmation quadratique successive, in « Lecture notes in control and information sciences n° 63 », A. Bensoussan et J. L. Lions ed., 16-31, Springer Verlag, Berlin, 1984. Zbl0559.90081MR876712
  8. [8] J. F. BONNANS, G. LAUNAY, On the stability of sets defined by a finite number of equalities and inequalities, soumis au J. Opt. Th. Appl. Zbl0794.93096
  9. [9] C. CHARALAMBOUS, A lower bound for the controlling parameters of the exact penalty functions, Math. Programming 15, 278-290, 1978. Zbl0395.90071MR514613
  10. [10] F. H. CLARKE, A new approach to Lagrange multipliers, Math. Oper. Res. 2, 165-174, 1976. Zbl0404.90100MR414104
  11. [11] S. P. HAN, A global convergent method for nonlinear programming, J. Optim. Theory Appl. 22, 297-309, 1977. Zbl0336.90046MR456497
  12. [12] S. P. HAN, O. L. MANGASARIAN, Exact penalty functions in nonlinear programming, Math. Programming 17, 251-269, 1979. Zbl0424.90057MR550845
  13. [13] M. R. HESTENES, Optimization theory : the finite dimensional case, J. Wiley & Sons, New York, 1975. Zbl0327.90015MR461238
  14. [14] A. D. IOFFE, Necessary and sufficient conditions for a local minimum 1 : A reduction theorem and first order conditions, SIAM J. Control Opt. 17, 245-250, 1979. Zbl0417.49027MR525025
  15. [15] G. P. MACCORMICK, Second order conditions for constrained minima, SIAM J. Applied Math. 15, 641-652, 1967. Zbl0166.15601MR216866
  16. [16] O. L. MANGASARIAN, M. FROMOVITZ, The Fritz-John necessary optimality condition in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7, 37-47, 1967. Zbl0149.16701MR207448
  17. [17] J. P. PENOT, A new constraint qualification condition, J. Optim. Th. Appl. 48,459-468, 1986. Zbl0562.90078MR833007
  18. [18] T. PIETRZYKOWSKI, An exact potential method for constrained maxima, SIAM J. Numer. Anal. 2, 299-304, 1969. Zbl0181.46501MR245183
  19. [19] B. PSCHENICHNYI, Y. DANILINE, Méthodes numériques dans les problèmes d'extrémum, Mir, Moscou, 1965 (édition française : 1977). Zbl0389.65027
  20. [20] S. M. ROBINSON, Stability theory for Systems of inequalities, part II : differentiable nonlinear Systems, SIAM J. Numerical Analysis 13, 497-513, 1976. Zbl0347.90050MR410522
  21. [21] R. T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl0193.18401
  22. [22] R. T. ROCKAFELLAR, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12, 268-285, 1974. Zbl0257.90046MR384163
  23. [23] E. ROSENBERG, Exact penalty functions and stability in locally Lipschitz programming, Math. Programming 30, 340-356, 1984. Zbl0587.90083MR769237

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.