Théorie de la pénalisation exacte
- Volume: 24, Issue: 2, page 197-210
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBonnans, Joseph Frédéric. "Théorie de la pénalisation exacte." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.2 (1990): 197-210. <http://eudml.org/doc/193594>.
@article{Bonnans1990,
author = {Bonnans, Joseph Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {constrained optimization; globalization of algorithms; exact penalty functions; normality theory; weak second-order sufficient conditions},
language = {fre},
number = {2},
pages = {197-210},
publisher = {Dunod},
title = {Théorie de la pénalisation exacte},
url = {http://eudml.org/doc/193594},
volume = {24},
year = {1990},
}
TY - JOUR
AU - Bonnans, Joseph Frédéric
TI - Théorie de la pénalisation exacte
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 2
SP - 197
EP - 210
LA - fre
KW - constrained optimization; globalization of algorithms; exact penalty functions; normality theory; weak second-order sufficient conditions
UR - http://eudml.org/doc/193594
ER -
References
top- [1] M. S. BAZARAA, J. J. GOODE, Sufficient conditions for a globally exact penalty function without convexity, Math. Programming Study 19, 1-15, 1982. Zbl0497.90058MR669723
- [2] A. BEN-TAL, Second order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 143-165, 1980. Zbl0416.90062MR600379
- [3] D. P. BERTSEKAS, Necessary and sufficient conditions for a penalty method to be exact, Math. Programming 9, 87-99, 1975. Zbl0325.90055MR384144
- [4] D. P. BERTSEKAS, Constrained optimization and Lagrange multiplier methods,Academic Press, New York, 1982. Zbl0572.90067MR690767
- [5] J. F. BONNANS, Asymptotic stability of the unit stepsize in exact penalty methods,SIAM J. Cont. Optimiz. 27, 631-641, 1989. Zbl0678.90068MR993290
- [6] J. F. BONNANS, Augmentability and exact penalisability in nonlinear programming under a weak second-order sufficiency condition, in rapport INRIA n° 548, 1986.
- [7] J. F. BONNANS, D. GABAY, Une extension de la programmation quadratique successive, in « Lecture notes in control and information sciences n° 63 », A. Bensoussan et J. L. Lions ed., 16-31, Springer Verlag, Berlin, 1984. Zbl0559.90081MR876712
- [8] J. F. BONNANS, G. LAUNAY, On the stability of sets defined by a finite number of equalities and inequalities, soumis au J. Opt. Th. Appl. Zbl0794.93096
- [9] C. CHARALAMBOUS, A lower bound for the controlling parameters of the exact penalty functions, Math. Programming 15, 278-290, 1978. Zbl0395.90071MR514613
- [10] F. H. CLARKE, A new approach to Lagrange multipliers, Math. Oper. Res. 2, 165-174, 1976. Zbl0404.90100MR414104
- [11] S. P. HAN, A global convergent method for nonlinear programming, J. Optim. Theory Appl. 22, 297-309, 1977. Zbl0336.90046MR456497
- [12] S. P. HAN, O. L. MANGASARIAN, Exact penalty functions in nonlinear programming, Math. Programming 17, 251-269, 1979. Zbl0424.90057MR550845
- [13] M. R. HESTENES, Optimization theory : the finite dimensional case, J. Wiley & Sons, New York, 1975. Zbl0327.90015MR461238
- [14] A. D. IOFFE, Necessary and sufficient conditions for a local minimum 1 : A reduction theorem and first order conditions, SIAM J. Control Opt. 17, 245-250, 1979. Zbl0417.49027MR525025
- [15] G. P. MACCORMICK, Second order conditions for constrained minima, SIAM J. Applied Math. 15, 641-652, 1967. Zbl0166.15601MR216866
- [16] O. L. MANGASARIAN, M. FROMOVITZ, The Fritz-John necessary optimality condition in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7, 37-47, 1967. Zbl0149.16701MR207448
- [17] J. P. PENOT, A new constraint qualification condition, J. Optim. Th. Appl. 48,459-468, 1986. Zbl0562.90078MR833007
- [18] T. PIETRZYKOWSKI, An exact potential method for constrained maxima, SIAM J. Numer. Anal. 2, 299-304, 1969. Zbl0181.46501MR245183
- [19] B. PSCHENICHNYI, Y. DANILINE, Méthodes numériques dans les problèmes d'extrémum, Mir, Moscou, 1965 (édition française : 1977). Zbl0389.65027
- [20] S. M. ROBINSON, Stability theory for Systems of inequalities, part II : differentiable nonlinear Systems, SIAM J. Numerical Analysis 13, 497-513, 1976. Zbl0347.90050MR410522
- [21] R. T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl0193.18401
- [22] R. T. ROCKAFELLAR, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12, 268-285, 1974. Zbl0257.90046MR384163
- [23] E. ROSENBERG, Exact penalty functions and stability in locally Lipschitz programming, Math. Programming 30, 340-356, 1984. Zbl0587.90083MR769237
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.