On pointwise stability of cubic smoothing splines with nonuniform sampling points
R. S. Anderssen; F. R. de Hoog; L. B. Wahlbin
- Volume: 25, Issue: 6, page 671-692
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] C. DE BOOR, A Practical Guide to Splines, Springer, New York, 1978. Zbl0406.41003MR507062
- [2] J. C. HOLLADAY, Smoothest curve approximation, Math. Comp. 11, 1957, 233-243. Zbl0084.34904MR93894
- [3] F. R. DE HOOG and R. S. ANDERSSEN, Convergence of kernel functions for cubic smoothing splines on non-equispaced grids, Austral. J. Statist. 30A, 1988, 90-99. Zbl0681.41006
- [4] C. H. REINSCH, Smoothing by spline functions, Numer. Math. 10, 1967, 177 183. Zbl0161.36203MR295532
- [5] I. J. SCHOENBERG, Spline functions and the problem of graduation, Proc. Nat. Acad, Sci. 52, 1964, 947-950. Zbl0147.32102MR167768
- [6] B. W. SILVERMAN, Spline smoothing : the equivalent variable kernel method, Ann. Statist. 12, 1984, 898-916. Zbl0547.62024MR751281
- [7] E. WHITTAKER, On a new method of graduation, Proc. Edinburgh Math. Soc. 41, 1923, 63-75.