Curve mesh fairing and G C 2 surface interpolation

H. Nowacki; P. D. Kaklis; J. Weber

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 1, page 113-135
  • ISSN: 0764-583X

How to cite

top

Nowacki, H., Kaklis, P. D., and Weber, J.. "Curve mesh fairing and $GC^2$ surface interpolation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 113-135. <http://eudml.org/doc/193649>.

@article{Nowacki1992,
author = {Nowacki, H., Kaklis, P. D., Weber, J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {surface interpolation; curve mesh fairing; numerical examples; fair surface; continuous curvature},
language = {eng},
number = {1},
pages = {113-135},
publisher = {Dunod},
title = {Curve mesh fairing and $GC^2$ surface interpolation},
url = {http://eudml.org/doc/193649},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Nowacki, H.
AU - Kaklis, P. D.
AU - Weber, J.
TI - Curve mesh fairing and $GC^2$ surface interpolation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 113
EP - 135
LA - eng
KW - surface interpolation; curve mesh fairing; numerical examples; fair surface; continuous curvature
UR - http://eudml.org/doc/193649
ER -

References

top
  1. [1] P. M. ANSELONE and P. J. LAURENT, A General Method for the Construction of Interpolating Spline Functions, Numer. Math. 12 (1968), 66-82. Zbl0197.13501MR249904
  2. [2] R. E. BARNHILL, Representation and Approximation of Surfaces, in Mathematical Software III, J. R. Rice, éd., Academic Press, New York, 1977, 68-119. Zbl0407.68030MR489081
  3. [3] H. CHIYOKURA and F. KIMURA, A New Surface Interpolation Method for Irregular Curve Models, Comput. Graph. Forum 3 (1984), 789-813. 
  4. [4] S. A. COONS, Surfaces for Computer Aided Design of Space Forms, MIT-Report MAC-TR-41, 1961. 
  5. [5] D. D. COX, Multivariate Smoothing Spline Functions, SIAM J. Numer. Anal. 21, N° 4 (1984), 789-813. Zbl0581.65012MR749371
  6. [6] P. DIERCKX, An Algorithm for Surface Fitting with Spline Functions, IMA J. Numer. Anal. 1 (1981), 267-283. Zbl0469.65006MR641310
  7. [7] P. DIERCKX, A Fast Algorithm for Smoothing Data on a Rectangular Grid while Using Spline Functions, SIAM J. Numer. Anal 19 (1982), 1286-1304. Zbl0493.65003MR679667
  8. [8] Q. DING and B. J. DAVIES, Surface Engineering Geometry for Computer-Aided Design and Manufacture, Ellis Horwood Ltd., Chichester, U. K., 1987. MR930448
  9. [9] N. DYN and G. WAHBA, On the Estimation of Functions of Several Random Variables from Aggregated Data, SIAM J. Anal. 13, N°1 (1982), 134-152. Zbl0488.65079MR641546
  10. [10] G. FARIN, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, 1990. Zbl0702.68004MR1058011
  11. [11] F. R GANTMACHER, The Theory of Matrices, Vol. 1, Chelsea Publ. Comp., New York, 1977. Zbl0927.15001MR1657129
  12. [12] R. G. GOULT, The Smoothing of Parametric Curves and Surfaces, in Papers of the Fourth Joint Anglo-Hungarian Seminar on Computer Aided Design, G. Renner, M. J. Pratt, eds., published jointly by Computer and Automation Institute, Hungarian Academy of Sciences, and Dept. Appl. Computing and Mathematics, Cranfield Institute of Technology, Budapest, 1985. 
  13. [13] J. HAHN, Filling Polygonal Holes with Rectangular Patches, in Theory and Practice of Geometric Modelling, W. Strasser, H. P. Seidel, eds., Springer Verlag, Heidelberg, 1989. Zbl0692.68074MR1042325
  14. [14] J. G. HAYES and J. HALLIDAY, The Least-Squares Fitting of Cubic Spline Surfaces to General Data Sets, J. Inst. Math. Appl. 14 (1974), 89-103. Zbl0284.65005MR378353
  15. [15] M. HOSAKA, Theory of Curve and Surface Synthesis and their Smooth Fitting, Inform. Process. Japan 9 (1969), 60-68. Zbl0276.68042MR264831
  16. [16] J. HOSCHEK and D. LASSER, Grundlagen der Geometrischen Datenverarbeitung, Teubner, Stuttgart, 1989. Zbl0682.68002MR1055828
  17. [17] C. L. HU and L. L. SCHUMAKER, Bivariate Natural Spline Smoothing, in Approximation and Application, G. Meinardus and G. Nurnberger, eds., Birkhauser, Basel, 1985, 165-179. Zbl0561.41011MR899096
  18. [18] C. L. HU and L. L. SCHUMAKER, Complete Spline Smoothing, Numer. Math. 49 (1986), 1-10. Zbl0633.65015MR847014
  19. [19] A. D. IOFFE and V. M. TIHOMIROV, Theory of Extremal Problems, in Stud. Math. Appl. 6, North Holland Publishing Company, Amsterdam, 1979. Zbl0407.90051MR528295
  20. [20] B. JOHANSSON, Unpublished Notes and Correspondence, 1989. 
  21. [21] A.K. JONES, Non-rectangular Surface Patches with Curvature Continuity, Comput. Aided Design 6 (1988). Zbl0699.65010
  22. [22] J. KAHMANN, Continuity of Curvature between Adjacent Bézier Patches, in Surfaces in CAGD, North Holland Publ. Comp., Amsterdam, 1983. MR709289
  23. [23] N. KAKISHITA, An Approach to Splining Curves and Surfaces, 1970 (unpublished). 
  24. [24] P. D. KAKLIS, Fairing of 3D Noisy Measurements in the Context of a Curve Mesh, Sonderforschungsbereich 203, Teilprojekt A2, Institut für Schiffs und Meerestechnik, Technische Universität Berlin, Berlin, November 1989. 
  25. [25] A. KUFNER O. JOHN and S. FUCIK, Function Spaces, Noordhoff Internat. Publ., Leyden, 1977. Zbl0364.46022MR482102
  26. [26] C. KUO, Computer Methods for Ship Surface Design, Longman Group Ltd, London, 1971. 
  27. [27] P. LANKASTER and M. TISMENETSKY, The Theory of Matrices with Applications, Academic Press, New York, 1985. Zbl0558.15001MR792300
  28. [28] D. LIU and J. HOSCHEK, GC1 Continuity Conditions between Adjacent Rectangular and Triangular Bézier Surface Patches, Comput. Aided Geom. Design 6 (1989). Zbl0673.65006
  29. [29] G. M. NIELSON, Bivariate Spline Functions and the Approximation of Linear Functionals, Numer. Math.21 (1973), 138-160. Zbl0251.41004MR338644
  30. [30] G. M. NIELSON, Multivariate Smoothing and Interpolating Splines, SIAM J. Numer. Anal. 11, N° 2 (1974), 435-446. Zbl0286.65003MR361543
  31. [31] H. NOWACKI, Liu DINGYUAN and LU XINMIN, Mesh Fairing GCl Surface Generation Method, in Theory and Practice of Geometric Modelling, W. Strasser, H. P. Seidel, eds., Springer Verlag, Heidelberg, 1989, 93-108. Zbl0692.68077
  32. [32] H. NOWACKI and D. REESE, Design and Fairing of Ship Surfaces, in Surfaces in CAGD, North Holland Publishing Company, Amsterdam, 1983. 
  33. [33] C. H. REINSCH, Smoothing by Spline Functions, Numer. Math. 10 (1967), 177-183. Zbl0161.36203MR295532
  34. [34] C. H. REINSCH, Smoothing by Spline Functions II, Numer. Math. 16 (1971), 451-454. Zbl1248.65020MR1553981
  35. [35] T. REUDING, Bézier Patches on Cubic Grid Curves. An Application to the Preliminary Design of a Yacht Hull Surface, Comput. Aided Geom. Design 6 (1989). 
  36. [36] R. F. SARRAGA, G1 Interpolation of Generally Unrestricted Cubic Bézier Curves, Comput. Aided Geom. Design 4 (1987). Zbl0621.65002MR898021
  37. [37] R. F. SARRAGA, Computer Modelling of Surfaces with Arbitrary Shapes, IEEE Comp. Graph. Appl. 10, N° 2 (1990). 
  38. [38] L. SCHUMAKER, Fitting Surfaces to Scattered Data, in Approximation Theory II, G. G. Lorentz, C. K. Chui and L. Schumaker, eds., Academic Press, New York, 1976. Zbl0343.41003MR426369
  39. [39] I. SINGER, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer Verlag, Heidelberg, 1970. Zbl0197.38601MR270044
  40. [40] B. SU and D. LIU, Computational Geometry, Academic Press and Shanghai Scientifîc and Technical Papers, New York, 1989. Zbl0679.68206MR1019561
  41. [41] O. TAUSSKY, Bounds for Characteristic Roots of Matrices, Duke Math. J. 15 (1948) 1043-1044. Zbl0031.24405MR28810
  42. [42] F. I. UTRERAS, Cross-Validation Techniques for Smoothing Spline Functions in One and Two Dimensions, in Smoothing Techniques in Curve Estimation, M. Rosenblatt, Th. Gasser, eds., Lecture Notes in Math. 757, Springer Verlag, Heidelberg, 1979, 196-232. Zbl0447.65005MR564260
  43. [43] F. I. UTRERAS, On Generalized Cross-Validation for Multivariate Smoothing Spline Functions, SIAM J. Sci. Statist. Comput. 8, N° 4 (1987), 630-643. Zbl0622.65008MR892310
  44. [44] V. V. VOYEVODIN, Linear Algebra, MIR Publishers, Moscow, 1983. Zbl0523.15001MR722137
  45. [45] G. WAHBA, Convergence Rates of « Thin Plate » Smoothing Splines when the Data are Noisy, in Smoothing Techniques in Curve Estimation, M. Rosenblatt, Th. Gasser, eds., Lecture Notes in Math. 757, Springer Verlag, Heidelberg, 1979, 233-245. Zbl0449.65003MR564261
  46. [46] G. WAHBA and J. WENDELBERGER, Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross-Validation, Mon. Weather Rev. 108 (1980), 36-57. 
  47. [47] G. WAHBA, Bayesian « Confidence Intervals » for the Cross-Validated Smoothing Spline, J. Roy. Statist. Soc., Ser. B 45, N° 1 (1983), 133-150. Zbl0538.65006MR701084
  48. [48] J. WEBER, Methods for Constructing Curvature Continuous Free Form Surfaces, in German, Dissertation, TU Berlin, 1990. 
  49. [49] G. WAHBA, Surface Fitting with Scattered Noisy Data on Euclidean D-Space and on the Sphere, Rocky Mountain, J. Math. 14, 1 (1984), 281-299. Zbl0565.65002MR736179
  50. [50] W. H. WONG, On Constrained Multivariate Splines and Their Approximations, Numer. Math. 43 (1984), 141-152. Zbl0553.41028MR726367

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.