Conditions for regular B -spline curves and surfaces

N. Dyn; D. Levin; I. Yad-Shalom

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 1, page 177-190
  • ISSN: 0764-583X

How to cite

top

Dyn, N., Levin, D., and Yad-Shalom, I.. "Conditions for regular $B$-spline curves and surfaces." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 177-190. <http://eudml.org/doc/193652>.

@article{Dyn1992,
author = {Dyn, N., Levin, D., Yad-Shalom, I.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {regular curves; -spline curve; -spline surfaces},
language = {eng},
number = {1},
pages = {177-190},
publisher = {Dunod},
title = {Conditions for regular $B$-spline curves and surfaces},
url = {http://eudml.org/doc/193652},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Dyn, N.
AU - Levin, D.
AU - Yad-Shalom, I.
TI - Conditions for regular $B$-spline curves and surfaces
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 177
EP - 190
LA - eng
KW - regular curves; -spline curve; -spline surfaces
UR - http://eudml.org/doc/193652
ER -

References

top
  1. [1] C. DE BOOR, (1978), A Practical Guide to Splines, Springer-Verlag. Zbl0406.41003MR507062
  2. [2] H. EDELSBRUNER, (1987), Algorithms in combinatorial geometry, Springer-Verlag. Zbl0634.52001MR904271
  3. [3] J. M. LANE and R. F. RIESENFELD (1980), A theoretical development for the computer génération and display of piecewise polynomial surfaces, IEEE T. Pattern Anal. 2, 35-46. Zbl0436.68063
  4. [4] K. H. LAU, (1988), Conditions for avoiding loss of Geometric continuity on spline curves, Comput, Aided Geom. Design. 5, 209-214. Zbl0646.41009MR959605
  5. [5] C. M. STONE and T. DEROSE, (1989), A geometric characterization of parametric cubic curves, ACM Trans. Graph. 8, 147-163. Zbl0746.68102
  6. [6] C. Y. WANG, (1981), Shape classification of the parametric cubic curve and parametric B-spline cubic curve, Comput. Aided Design. 13, 199-206. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.