Spherical splines
- Volume: 26, Issue: 1, page 1-22
- ISSN: 0764-583X
Access Full Article
topHow to cite
topHoschek, J., and Seemann, G.. "Spherical splines." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 1-22. <http://eudml.org/doc/193654>.
@article{Hoschek1992,
author = {Hoschek, J., Seemann, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Bézier curves; Bézier spline curves; algebraic surfaces; Noncircular spherical Bézier splines},
language = {eng},
number = {1},
pages = {1-22},
publisher = {Dunod},
title = {Spherical splines},
url = {http://eudml.org/doc/193654},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Hoschek, J.
AU - Seemann, G.
TI - Spherical splines
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 1
EP - 22
LA - eng
KW - Bézier curves; Bézier spline curves; algebraic surfaces; Noncircular spherical Bézier splines
UR - http://eudml.org/doc/193654
ER -
References
top- [1] G. FARIN, Curves and surfaces for Computer Aided Geometrie Design (sec. ed.) Academic Press, 1990. Zbl0702.68004MR1058011
- [2] R. D. FAROUKI, T. SAKKALIS, Pythagorean hodographs. Submitted to IBM, J. Res. Develop., 1990. MR1084084
- [3] J. HOSCHEK, Intrinsic parametrization for approximation. Comput. Aided Geom. Design 5 (1988), 27-31. Zbl0644.65011MR945303
- [4] J. HOSCHEK, F.-J. SCHNEIDER, P. WASSUM, Optimal approximate conversion of spline surfaces. Comput. Aided Geom. Design 6 (1989), 293-306. Zbl0682.65005MR1030616
- [5] J. HOSCHEK, D. LASSER, Grundlagen der geometrischen Datenverarbeitung. Teubner, 1989. Zbl0682.68002MR1055828
- [6] J. HOSCHEK, Circular Splines. Submitted to Computer-aided design, 1990. Zbl0763.65005
- [7] K. K. KUBOTA, Pythagorean triples in unique factorization domains. Amer. Math. Monthly 79 (1972), 503-505. Zbl0242.10008MR297690
- [8] L. PIEGL, On the use of infinite control points in CAGD. Comput. Aided Geom. Design 4 (1987), 155-166. Zbl0622.65142MR898031
- [9] G. SEEMANN, Interpolation und Approximation mit sphärischen Kreissplines in Bézier-Darstellung. Dipl.-Arbeit Fachbereich Mathematik, Technische Hochschule Darmstadt 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.