Spherical splines

J. Hoschek; G. Seemann

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 1, page 1-22
  • ISSN: 0764-583X

How to cite

top

Hoschek, J., and Seemann, G.. "Spherical splines." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 1-22. <http://eudml.org/doc/193654>.

@article{Hoschek1992,
author = {Hoschek, J., Seemann, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Bézier curves; Bézier spline curves; algebraic surfaces; Noncircular spherical Bézier splines},
language = {eng},
number = {1},
pages = {1-22},
publisher = {Dunod},
title = {Spherical splines},
url = {http://eudml.org/doc/193654},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Hoschek, J.
AU - Seemann, G.
TI - Spherical splines
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 1
EP - 22
LA - eng
KW - Bézier curves; Bézier spline curves; algebraic surfaces; Noncircular spherical Bézier splines
UR - http://eudml.org/doc/193654
ER -

References

top
  1. [1] G. FARIN, Curves and surfaces for Computer Aided Geometrie Design (sec. ed.) Academic Press, 1990. Zbl0702.68004MR1058011
  2. [2] R. D. FAROUKI, T. SAKKALIS, Pythagorean hodographs. Submitted to IBM, J. Res. Develop., 1990. MR1084084
  3. [3] J. HOSCHEK, Intrinsic parametrization for approximation. Comput. Aided Geom. Design 5 (1988), 27-31. Zbl0644.65011MR945303
  4. [4] J. HOSCHEK, F.-J. SCHNEIDER, P. WASSUM, Optimal approximate conversion of spline surfaces. Comput. Aided Geom. Design 6 (1989), 293-306. Zbl0682.65005MR1030616
  5. [5] J. HOSCHEK, D. LASSER, Grundlagen der geometrischen Datenverarbeitung. Teubner, 1989. Zbl0682.68002MR1055828
  6. [6] J. HOSCHEK, Circular Splines. Submitted to Computer-aided design, 1990. Zbl0763.65005
  7. [7] K. K. KUBOTA, Pythagorean triples in unique factorization domains. Amer. Math. Monthly 79 (1972), 503-505. Zbl0242.10008MR297690
  8. [8] L. PIEGL, On the use of infinite control points in CAGD. Comput. Aided Geom. Design 4 (1987), 155-166. Zbl0622.65142MR898031
  9. [9] G. SEEMANN, Interpolation und Approximation mit sphärischen Kreissplines in Bézier-Darstellung. Dipl.-Arbeit Fachbereich Mathematik, Technische Hochschule Darmstadt 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.