On convex Bézier triangles

H. Prautzsch

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 1, page 23-36
  • ISSN: 0764-583X

How to cite

top

Prautzsch, H.. "On convex Bézier triangles." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 23-36. <http://eudml.org/doc/193657>.

@article{Prautzsch1992,
author = {Prautzsch, H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convexity; triangular Bézier nets},
language = {eng},
number = {1},
pages = {23-36},
publisher = {Dunod},
title = {On convex Bézier triangles},
url = {http://eudml.org/doc/193657},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Prautzsch, H.
TI - On convex Bézier triangles
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 23
EP - 36
LA - eng
KW - convexity; triangular Bézier nets
UR - http://eudml.org/doc/193657
ER -

References

top
  1. [1] G. CHANG and P. DAVIS, The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40, (1984), 11-28. Zbl0528.41005MR728296
  2. [2] G. CHANG and Y. FENG, A new proof for the convexity of the Bernstein - Bézier surfaces over triangles, Chinese Ann. Math, Ser., B6 (2), (1985), 172-176. Zbl0575.41010MR841865
  3. [3] G. CHANG and J. HOSCHEK, Convergence of Bézier triangular nets and a theorem by Pólya, J. Approx. Theory, Vol. 58, N°. 3, (1989), 247-258. Zbl0724.41005MR1012674
  4. [4] W. BOEHM, G. FARIN and J. KAHMANN, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1, (1984), 1-60. Zbl0604.65005
  5. [5] W. DAHMEN and C. A. MICCHELLI, Subdivision algoritmus for the génération of box simple surfaces, Compt. Aided Geom. Desing 1, (1984), 115-129. Zbl0581.65011MR1230249
  6. [6] W. DAHMEN and C. A. MICCHELLI, Convexity of multivariate Bernstein polynomials and box spline surfaces, Studia Sci. Math. Hungar. 23, (1988), 265-287. Zbl0689.41013MR962457
  7. [7] G. FARIN, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design, Vol. 3, Number 2, (1986), 83-127. MR867116
  8. [8] T. N. T. GOODMAN, Convexity of Bézier nets on triangulations, to appear in Comput. Aided Geom. Design. Zbl0731.41009MR1107853
  9. [9] T. A. GRANDINE, On convexity of piecewise polynomial functions on triangulations, Comput. Aided Geom. Design 6, (1989), 181-187. Zbl0675.41029MR1019422
  10. [10] J. A. GREGORY and J. ZHOU, Convexity of Bézier nets on sub-triangles, Technical Report 04/90, Brunel University, Dept. of Math. and Statistics, March (1990). Zbl0756.41026MR1122914
  11. [11] S. L. LEE and G. M. PHILLIPS, Convexity of Bernstein Polynomials on the standard triangle, preprint. 
  12. [12] C. A. MICCHELLI, H. PRAUTZSCH, Computing surfaces invariant under subdivision, Comput. Aided Geom. Design 4, (1987), 321-328. Zbl0646.65013MR937370
  13. [13] H. PRAUTZSCH, Unterteilungsalgorithmen für multivariate Splines - Ein geometrischer Zugang, Diss., TU Braunschweig (1983/84). Zbl0647.41015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.