On convex Bézier triangles
- Volume: 26, Issue: 1, page 23-36
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] G. CHANG and P. DAVIS, The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40, (1984), 11-28. Zbl0528.41005MR728296
- [2] G. CHANG and Y. FENG, A new proof for the convexity of the Bernstein - Bézier surfaces over triangles, Chinese Ann. Math, Ser., B6 (2), (1985), 172-176. Zbl0575.41010MR841865
- [3] G. CHANG and J. HOSCHEK, Convergence of Bézier triangular nets and a theorem by Pólya, J. Approx. Theory, Vol. 58, N°. 3, (1989), 247-258. Zbl0724.41005MR1012674
- [4] W. BOEHM, G. FARIN and J. KAHMANN, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1, (1984), 1-60. Zbl0604.65005
- [5] W. DAHMEN and C. A. MICCHELLI, Subdivision algoritmus for the génération of box simple surfaces, Compt. Aided Geom. Desing 1, (1984), 115-129. Zbl0581.65011MR1230249
- [6] W. DAHMEN and C. A. MICCHELLI, Convexity of multivariate Bernstein polynomials and box spline surfaces, Studia Sci. Math. Hungar. 23, (1988), 265-287. Zbl0689.41013MR962457
- [7] G. FARIN, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design, Vol. 3, Number 2, (1986), 83-127. MR867116
- [8] T. N. T. GOODMAN, Convexity of Bézier nets on triangulations, to appear in Comput. Aided Geom. Design. Zbl0731.41009MR1107853
- [9] T. A. GRANDINE, On convexity of piecewise polynomial functions on triangulations, Comput. Aided Geom. Design 6, (1989), 181-187. Zbl0675.41029MR1019422
- [10] J. A. GREGORY and J. ZHOU, Convexity of Bézier nets on sub-triangles, Technical Report 04/90, Brunel University, Dept. of Math. and Statistics, March (1990). Zbl0756.41026MR1122914
- [11] S. L. LEE and G. M. PHILLIPS, Convexity of Bernstein Polynomials on the standard triangle, preprint.
- [12] C. A. MICCHELLI, H. PRAUTZSCH, Computing surfaces invariant under subdivision, Comput. Aided Geom. Design 4, (1987), 321-328. Zbl0646.65013MR937370
- [13] H. PRAUTZSCH, Unterteilungsalgorithmen für multivariate Splines - Ein geometrischer Zugang, Diss., TU Braunschweig (1983/84). Zbl0647.41015