Modeling contours of trivariate data

B. Hamann

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 1, page 51-75
  • ISSN: 0764-583X

How to cite

top

Hamann, B.. "Modeling contours of trivariate data." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 51-75. <http://eudml.org/doc/193659>.

@article{Hamann1992,
author = {Hamann, B.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {data reduction; trivariate data; numerical examples; algorithm; construction of contour surfaces; triangulation; topological structure; smooth surface; curvature},
language = {eng},
number = {1},
pages = {51-75},
publisher = {Dunod},
title = {Modeling contours of trivariate data},
url = {http://eudml.org/doc/193659},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Hamann, B.
TI - Modeling contours of trivariate data
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 51
EP - 75
LA - eng
KW - data reduction; trivariate data; numerical examples; algorithm; construction of contour surfaces; triangulation; topological structure; smooth surface; curvature
UR - http://eudml.org/doc/193659
ER -

References

top
  1. [1] P. ALFELD (1989), Scattered Data Interpolation in Three or More Variables, Mathematical Methods in Computer Aided Geometrie Design, T. Lyche, L. Schumaker (eds.), Academic Press, 1-33. Zbl0682.41003MR1022695
  2. [2] A. A. BALL (1974), Consurf I, Comput. Aided Design 6, 243-249. 
  3. [3] A. A. BALL (1975), Consurf II, Comput. Aided Design 7, 237-242. 
  4. [4] A. A. BALL (1977), Consurf III, Comput. Aided Design 9, 9-12. 
  5. [5] R. E. BARNHILL, G. BIRKHOFF, W. J. GORDON (1973), Smooth Interpolation in Triangles, J. Approx. Theory, 8, 114-128. Zbl0271.41002MR368382
  6. [6] R. E. BARNHILL (1985), Surfaces in Computer Aided Geometric Design : A Survey with New Results, Comput. Aided Geom. Design, Vol.2, N° 1-3, 1-17. Zbl0597.65001MR828527
  7. [7] B. K. BLOOMQUIST (1990), Contouring Trivariate Surfaces, Masters Thesis, Arizona State University, Department of Computer Science. 
  8. [8] W. BOEHM, G. FARIN, J. KAHMANN (1984), A Survey of Curve and Surface Methods in CAGD, Comput. Aided Geom. Design, Vol. 1, 1-60. Zbl0604.65005
  9. [9] D. H. BALLARD, C. M. BROWN (1982), Computer Vision, Prentice Hall. 
  10. [10] C. R. CALLADINE (1986), Gaussian Curvature and Shell Structures, Mathematics of Surfaces, J. Gregory (ed.), Clarendon Press, Oxford, 179-196. 
  11. [11] B. K. CHOI, Y. SHIN, Y. I. YOON, J. W. LEE (1988), Triangulation of Scattered Data in 3D Space, Comput. Aided Design, Vol.20, N°5, 239-248. Zbl0681.65002
  12. [12] W. DAHMEN (1989), Smooth Piecewise Quadric Surfaces, Mathematical Methods in Computer Aided Geometric Design, T. Lyche, L. L. Schumaker (eds.), Academic Press, 181-193. Zbl0682.41001MR1022707
  13. [13] R. A. DREBIN, L. CARPENTER, P. HANRAHAN (1988), Volume Rendering, Comput. Graphics, Vol.22, N 4, 65-74. 
  14. [14] M. J. DÜRST (1988), Letters: Additional Reference to « Marching Cubes », Comput. Graphics, Vol. 22, N° 2. 
  15. [15] G. FARIN (1983), Smooth Interpolation to Scattered 3D Data, Surfaces in CAGD, R. E. Barnhill, W. Boehm (eds.), 43-63. MR709288
  16. [16] G. FARIN (1986), Triangular Bernstein-Bézier Patches, Comput. Aided Geom. Design, Vol.3, N° 2, 83-127. MR867116
  17. [17] G. FARIN (1988), Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Inc. Zbl0694.68004MR974109
  18. [18] I. FAUX, M. PRATT (1979), Computational Geometry for Design and Manufacture, Ellis Horwood. Zbl0395.51001MR524724
  19. [19] T. A. FOLEY, D. A. LANE, G. M. NIELSON (1990), Towards Animating Ray-Traced Volume Visualization, to appear in Visualization and Computer Animation Journal. 
  20. [20] R. FRANKE, J. M. NIELSON (1990), Scattered Data Interpolation and Applications : A Tutorial and Survey, Geometric Modelling : Methods and Their Applications, H. Hagen, D. Roller (eds.), Springer. 
  21. [21] K. S. FU, R. C. GONZALEZ, C. S. G. LEE (1987), Robotics, McGraw-Hill. 
  22. [22] H. FUCHS, M. LEVOY, S. M. PIZER (1989), Interactive Visualization of 3D Medical Data, Computer, Vol 22, N° 8, 46-51. 
  23. [23] H. HAGEN, H. POTTMANN (1989), Curvature Continuous Triangular Interpolants, Mathematical Methods in Computer Aided Geometric Design, T Lyche, L L Schumaker (eds.), Academic Press, 373-384. Zbl0675.41002MR1022719
  24. [24] B. HAMANN (1990), Visualisierungstechniken zur Darstellung dreidimensionaler Datenmengen (Visualization Techniques for the Representation of Three-Drmensional Data Sets, in German), in CAD Computergraphik, Vol. 14, N° 2, Austria, 129-139. 
  25. [25] B. HAMANN, G. FARIN, G. M. NIELSON (1990), A Parametric Triangular Patch Based on Generalized Conics, in : Farin, G., ed., NURBS for Curve and Surface Design, SIAM, Philadelphia, 75-85. Zbl0767.68102MR1133465
  26. [26] J. HOSCHEK, D. LASSER (1989), Grundlagen der Geometrischen Datenverarbeitung (German), Teubner, Stuttgart (F.R.G.). Zbl0682.68002MR1055828
  27. [27] J. KAJIYA, B. VON HERZEN (1984), Ray Tracing Volume Densities, Comput Graphics, Vol. 18, N° 3, 165-173. 
  28. [28] C. L. LAWSON (1977), Software for C1 Surface Interpolation, Mathematical Software III, J. R. Rice (ed.), Academic Press, 161-194. Zbl0407.68033MR474682
  29. [29] A. J. Y. LE MEHAUTE, Y. LAFRANCHE (1989), A Knot Removal Strategy for Scattered Data in R2, Mathematical Methods in Computer Aided Geometric Design, T Lyche, L L Schumaker (eds.), Academic Press, 419-426. Zbl0675.41017MR1022694
  30. [30] M. LEVOY (1988), Display of Surfaces from Volume Data, IEEE Comput. Graphics Appl., Vol. 8, N° 3, 29-37. 
  31. [31] M. LEVOY (1990), Volume Rendering, IEEE Comput Graphics Appl., Vol. 10, N° 2, 33-40. 
  32. [32] M. B. LONG, K. LYONS, J. K. LAM (1989), Acquisition and Representation of 2D and 3D Data from Turbulent Flows and Flames, Computer, Vol. 22, N° 8, 39-45. 
  33. [33] W. E. LORENSEN, H. E. CLINE (1987), Marching Cubes : A High Resolution 3D Surface Construction Algorithm, Comput. Graphics, Vol. 21, N° 4, 163-169. 
  34. [34] D. R. NEY, E. K. FISHMAN, D. MAGID, R. A. DREBIN (1990), Volumetric Rendering, IEEE Comput. Graphics Appl., Vol. 10, N° 2, 24-32. 
  35. [35] G. M. NIELSON (1987), A Transfinite, Visually Continuous, Tnangular Interpolant, Geometric Modelling : Algorithms and New Trends, G Farm (ed.), SIAM Publications, Philadelphia, 235-246. MR936457
  36. [36] G. M. NIELSON, B. HAMANN, (1990), Techniques for the Interactive Visualization of Volumetric Data, Proceedings of the IEEE Conference Visualization '90, IEEE Computer Society Press, 45-50. 
  37. [37] C. S. PETERSEN, B. R. PIPER, A. J. WORSEY, (1987), Adaptive Contouring of a Trivariate Interpolant, Geometric Modeling : Algorithms and New Trends, G Farin (ed.), SIAM Publications, Philadelphia, 385-395. MR936467
  38. [38] B. R. PIPER (1987), Visually Smooth Interpolation with Triangular Bézier Patches, Geometric Modeling : Algorithms and New Trends, G. Farin (ed.), SIAM Publications, Philadelphia 221-233. MR936456
  39. [39] H. POTTMANN (1989), Scattered Data Interpolation Based upon Generalized Minimum Norm Networks, submitted to Constructive Approximation Theory. Zbl0725.65008
  40. [40] W. RATH (1988), Computergestützte Darstellungen von Hyperflächen des R4 und deren Anwendungsmöglichkeiten im CAGD (German), CAD Computergraphik, Vol. 11, N° 4, 111-117. 
  41. [41] P. SABELLA (1988), A Rendering Algorithm for Visualizing 3D Scalar Fields, Comput. Graphics, Vol. 22, N° 4, 51-55. 
  42. [42] T. W. SEDERBERG (1985), Piecewise Algebraic Surface Patches, Comput. Aided Geom. Design, Vol. 2, N° 1-3, 53-59. Zbl0578.65147MR828532
  43. [43] S. E. STEAD (1984), Estimation of Gradients from Scattered Data, Rocky Mountain J. Math., Vol. 14, N° 1, 265-279. Zbl0558.65009MR736178
  44. [44] U. TIEDE, K. H. HÖHNE, M. BOMANS, A. POMMERT, M. RIEMER, G. WIEBECKE (1990), Surface Rendering, IEEE Comput. Graphics Appl., Vol. 10, N° 2, 41-53. Zbl0712.92012
  45. [45] A. WORSEY, G. FARIN (1987), An N-Dimensional Clough-Tocher Element, Constr. Approx., Vol. 3, 99-110. Zbl0631.41003MR889547
  46. [46] S. W. ZUCKER, R. A. HUMMEL (1981), A Three-Dimensional Edge Operator, IEEE Trans. Pattern Recogn. Mach. Intelligence, Vol. PAMI-3, N° 3, 324-331. Zbl0456.68122

NotesEmbed ?

top

You must be logged in to post comments.