Curves from variational principles
- Volume: 26, Issue: 1, page 77-93
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMicchelli, Ch. A.. "Curves from variational principles." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 77-93. <http://eudml.org/doc/193661>.
@article{Micchelli1992,
author = {Micchelli, Ch. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {curve modelling; curve design; variational principle; variational curve problems; convex duality theory; optimal curve; numerical examples; quadratic minimization problem},
language = {eng},
number = {1},
pages = {77-93},
publisher = {Dunod},
title = {Curves from variational principles},
url = {http://eudml.org/doc/193661},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Micchelli, Ch. A.
TI - Curves from variational principles
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 77
EP - 93
LA - eng
KW - curve modelling; curve design; variational principle; variational curve problems; convex duality theory; optimal curve; numerical examples; quadratic minimization problem
UR - http://eudml.org/doc/193661
ER -
References
top- [1] M. DO CARMO, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. Zbl0326.53001MR394451
- [2] G. FARIN, Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, 1988. Zbl0694.68004MR974109
- [3] T. A. FOLEY, Interpolation with Internal and Point Tension Controls Using Cubic Weighted v-splines, ACM Trans. Math. Software 13 (1987), pp. 68-96. Zbl0626.65008MR896535
- [4] T. A. FOLEY and G. M. NIELSON, Knot Selection for Parametric Spline Interpolation, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche and L. L. Schumaker, Academic Press, 1989, pp. 261-271. Zbl0677.41013MR1022713
- [5] R. FRANKE, Recent Advances in the Approximation of Surfaces from Scattered Data, in Topics in Multivanate Approximation, eds., C. K. Chui, L. L. Schumaker, and F. I. Utreras, Academic Press, Boston, 1987. Zbl0629.41021MR924824
- [6] J. W. JEROME, and S. D. FISHER, Minimum Norm Extremals in Function Spaces with Applications to Classical and Modern Analysis, Lecture Notes in Math. 479, Springer-Verlag, Berlin, 1975. Zbl0307.41027MR442780
- [7] S. KARLIN, Total Positivity, Vol. 1, Stanford University Press, Stanford, 1968. Zbl0219.47030MR230102
- [8] S. KARLIN, Interpolation Properties of Generalized Perfect Splines and the Solutions of Certain Extremal Problems I, Trans. Amer. Math. Soc., 206 (1975), pp. 25-66. Zbl0303.41011MR367512
- [9] L. D. LANDAU, and E. M. LIFSHITZ, Theory of Elasticity, Pergamon Press, New York, 1959. MR106584
- [10] E. H. LEE, and G. E. FORSYTHE, Variational Study of Nonlinear Spline Curves, SIAM Rev. 15 (1973), pp. 120-133. MR331716
- [11] S. MARIN, An Approach to Data Parametrization in Parametric Cubic Spline Interpolation Problems, J. Approx. Theory 41 (1984), pp. 64-86. Zbl0558.41006MR742237
- [12] C. A. MICCHELLI and F. I. UTRERAS, Smoothing and Interpolation in a Convex Set of Hilbert Space, SIAM. J. Sci. Stat. Comp. 9 (1988), pp. 728-746. Zbl0651.65046MR945935
- [13] G. M. NIELSON, Some Piecewise Polynomial Alternatives to Spline Under Tension, in Computer Aided Geometric Design, eds., R. E. Barnhill, and R. F. Riesenfeld, Academic Press (1974), pp. 209-235. MR371012
- [14] K. SCHERER, Best Interpolation with Free Nodes by Closed Curves, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche, and L. L. Schumaker, Academic Press, 1989, pp. 549-559. Zbl0675.41008MR1022734
- [15] G. S. SIDHU, and H. L. WEINERT, Vector-valued Lg-splines, J. Math. Anal., Appl. 70 (1979), pp. 505-529. Zbl0435.65007MR543591
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.