The column-updating method for solving nonlinear equations in Hilbert space

M. A. Gomes-Ruggiero; J. M. Martínez

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 2, page 309-330
  • ISSN: 0764-583X

How to cite

top

Gomes-Ruggiero, M. A., and Martínez, J. M.. "The column-updating method for solving nonlinear equations in Hilbert space." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.2 (1992): 309-330. <http://eudml.org/doc/193665>.

@article{Gomes1992,
author = {Gomes-Ruggiero, M. A., Martínez, J. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {column-updating method; nonlinear operator equations; Hilbert spaces; local superlinear convergence; numerical comparison},
language = {eng},
number = {2},
pages = {309-330},
publisher = {Dunod},
title = {The column-updating method for solving nonlinear equations in Hilbert space},
url = {http://eudml.org/doc/193665},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Gomes-Ruggiero, M. A.
AU - Martínez, J. M.
TI - The column-updating method for solving nonlinear equations in Hilbert space
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 2
SP - 309
EP - 330
LA - eng
KW - column-updating method; nonlinear operator equations; Hilbert spaces; local superlinear convergence; numerical comparison
UR - http://eudml.org/doc/193665
ER -

References

top
  1. [1] R. H. BARTELS and G. H. GOLUB, The Simplex Method of Linear Programming using LU decomposition, Comm. ACM12 (1969) 266-268. Zbl0181.19104
  2. [2] C. G. BROYDEN, A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19 1965) 577-593. Zbl0131.13905MR198670
  3. [3] C. G. BROYDEN, The convergence of an algorithm for solving sparse nonlinear Systems, Math. Comp. 25 (1971) 285-294. Zbl0227.65038MR297122
  4. [4] C. G. BROYDEN, J. E. DENNIS and J. J. MORÉ, On the local and superlinear convergence of quasi-Newton methods, J. Inst. Math. Appl. 12 (1973) 223-246. Zbl0282.65041MR341853
  5. [5] J. E. DENNIS, Toward a unified convergence theory for Newton-like methods, in L. B. Rall, ed., Nonlinear functional analysis and applications, Academic Press, New York, London, 1971, pp. 425-472. Zbl0276.65029MR278556
  6. [6] J. E. DENNIS and J. J. MORÉ, A charactenzation of superlinear convergence and its application to quasi-Newton methods, Math. Comp. 28 (1974) 543-560. Zbl0282.65042MR343581
  7. [7] J. E. DENNIS and R. B. SCHNABEL, Numerical methods for unconstrained optimization and nonlinear equations, Prentice Hall, Englewood Cliffs, New Jersey, 1983. Zbl0579.65058MR702023
  8. [8] J. E. DENNIS and R. B. SCHNABEL, A View of Unconstrained Optimization, to appear in Handbook m Operations Research and Management Science, Vol.1, Optimization, G. L. Nemhauser, AHG Rinnooy Kan, M. J. Tood, eds., North Holland, Amsterdam 1989. MR1105100
  9. [9] J. E. DENNIS and H. F. WALKER, Convergence theorems for least-change secant update methods, SIAM J. Numer. Anal. 18 (1981), 949-987. Zbl0527.65032MR638993
  10. [10] I. S. DUFF, A. M. ERISMAN and J. K. REID, Direct methods for sparse matrices, Clarendon Press, Oxford, 1986. Zbl0604.65011MR892734
  11. [11] A. GEORGE and E. NG, Symbolic factorization for sparse Gaussian elimination with partial pivoting, SIAM J. Sci. Statist. Comput. 8 (1987), 877-898. Zbl0632.65021MR911061
  12. [12] G. H. GOLUB and Ch. F. VAN LOAN, Matrix Computations, John Hopkins, Baltimore, 1983. Zbl0559.65011MR733103
  13. [13] W. A. GRUVER and E. SACHS, algorithmic methods in optimal control, Pitman, Boston, London, Melbourne, 1981. Zbl0456.49001MR604361
  14. [14] L. V. KANTOROVICH and G. P. AKILOV, Functional analysis in normed spaces, MacMillan, New York, 1964. Zbl0127.06104MR213845
  15. [15] T. KATO, Perturbation theory for linear operators, Springer Verlag, New York, 1966. Zbl0148.12601MR203473
  16. [16] A. KOLMOGOROFF and S. FOMIN, Elements of the Theory of Functions and Functional Analysis, Izdat. Moscow Univ., Moscow, 1954. Zbl0501.46001
  17. [17] J. M. MARTINEZ, A quasi-Newton method with modification of one column periteration, Computing 33 (1984), 353-362. Zbl0546.90102MR773934
  18. [18] J. M. MARTÍNEZ, A new family of quasi-Newton methods with direct secant updates of matrix factorizations, SIAM J. Numer. Anal. 27 (1990), 1034-1049. Zbl0702.65053MR1051122
  19. [19] E. S. MARWIL, Convergence results for Schubert's method for solving sparse nonlinear equations, SIAM J. Numer. Anal. 16 (1979), 588-604. Zbl0453.65033MR537273
  20. [20] H. MATTHIES and G. STRANG, The solution of nonlinear finite element equations, Internat. J. Numer. Methods in Engrg. 14 (1979), 1613-1626. Zbl0419.65070MR551801
  21. [21] J. M. ORTEGA and W. C. RHEINBOLDT, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970. Zbl0241.65046MR273810
  22. [22] E. SACHS, Convergence rates of quasi-Newton algorithms for some nonsmooth optimization problems, SIAM J. Control Optim. 23 (1985), 401-418. Zbl0571.90083MR784577
  23. [23] E. SACHS, Broyden's method in Hilbert space, Math. Programming 35 (1986), 71-82. Zbl0598.90080MR842635
  24. [24] L. K. SCHUBERT, Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian, Math. Comp. 24 (1970), 27-30. Zbl0198.49402MR258276
  25. [25] L. K. SCHUBERT, An interval arithmetic approach for the construction of an almost globally convergence method for the solution of the nonlinear Poisson equation on the unit square, SIAM J. Sci. Statist. Comput. 5 (1984), 427-452. Zbl0539.65076MR740859
  26. [26] H. SCHWETLICK, Numerische Lösung nichtlinearer Gleichungen, Berlin : Deutscher Verlag der Wissenschaften, 1978. Zbl0402.65028MR519682
  27. [27] Ph. L. TOINT, Numerical solution of large sets of algebraic nonlinear equations, Math. Comp. 16 (1986), 175-189. Zbl0614.65058MR815839

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.