Spectral-finite element method for compressible fluid flows
- Volume: 26, Issue: 4, page 469-491
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGuo, B.-Y., and Cao, W.-M.. "Spectral-finite element method for compressible fluid flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.4 (1992): 469-491. <http://eudml.org/doc/193672>.
@article{Guo1992,
author = {Guo, B.-Y., Cao, W.-M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimation; convergence},
language = {eng},
number = {4},
pages = {469-491},
publisher = {Dunod},
title = {Spectral-finite element method for compressible fluid flows},
url = {http://eudml.org/doc/193672},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Guo, B.-Y.
AU - Cao, W.-M.
TI - Spectral-finite element method for compressible fluid flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 4
SP - 469
EP - 491
LA - eng
KW - error estimation; convergence
UR - http://eudml.org/doc/193672
ER -
References
top- [1] P. J ROACHE, Computational Fluid Dynamics, 2nd edition, Hermosa Publishers, Albuquerque, 1976. Zbl0251.76002MR411358
- [2] T. ATUSI, The existence and uniqueness of the solution of equations describing compressible viscous fluid flow in a domain, Proc. Japan Acad., 52 (1976), 334-337. Zbl0364.35039MR421321
- [3] B.-Y. GUO, Difference Methods for Partial Differential Equation, Science Press, Beijing, 1988.
- [4] P.-Y KUO, Résolution numérique de fluide compressible, C.R. Acad. Sci. Paris, 291A (1980), 167-171. Zbl0446.76062MR605008
- [5] B.-Y. GUO, Strict error estimation of numerical solution of compressible flow in two-dimensional space, Sciential Sinica, 26A (1983), 482-498. Zbl0517.76075MR724921
- [6] T. J. CHUNG, Finite Element Analysis in Fluid Dynamics, McGraw-Hill International Book Company, 1978. Zbl0432.76003MR497683
- [7] B.-Y. GUO, H.-P. MA, Strict error estimation for a spectral method of compressible fluid flow, CalColo, 24 (1987), 263-282. Zbl0668.76072MR1004522
- [8] C. CANUTO Y. MADAY, A. QUARTERONI, Analysis of the combined finite element and Fourier interpolation, Numer. Math., 39 (1982), 205-220. Zbl0496.42002MR669316
- [9] C. CANUTO, Y. MADAY, A. QUARTERONI, Combined finite element and spectral approximation of the Navier-Stokes equations, Numer. Math., 44 (1984), 201-217. Zbl0614.76021MR753953
- [10] B.-Y. GUO, Spectral-difference method for solving two-dimensional vorticity equations, J. Comput. Math., 6 (1988), 238-257. Zbl0668.76022MR967884
- [11] B.-Y. GUO, W.-M. CAO, Spectral-finite element method for solving two dimensional vorticity equations, Acta Math, Appl. Sinica, 7 (1991), 257-271. Zbl0734.76052MR1132064
- [12] W.-M CAO, B.-Y. GUO, Spectral-finite element method for solving three- dimensioanl vorticity equations, Bulletin, 32 (1991), 83-108. Zbl0797.76041MR1166470
- [13] B.-Y. GUO, W.-M. CAO, Spectral-finite element method for solving two-dimensional Navier-Stokes equations, accepted by J. Comp. Phys. Zbl0900.76443
- [14] R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
- [15] P. GRISVARD, Equations différentielles abstraites, Ann. Sci. École Norm. Sup., 4 (1969), 311-395. Zbl0193.43502MR270209
- [16] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [17] A. SCHATZ, V. THOMÉE, L. B. WAHLBIN, Maximum norm stability and error estimates in parabolic finite element equations, Commun. Pure Appl. Math., 33 (1980), 265-304. Zbl0414.65066MR562737
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.