Étude numérique des solutions périodiques d'une équation du second ordre
- Volume: 26, Issue: 4, page 493-506
- ISSN: 0764-583X
Access Full Article
topHow to cite
topRomano, M.. "Étude numérique des solutions périodiques d'une équation du second ordre." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.4 (1992): 493-506. <http://eudml.org/doc/193673>.
@article{Romano1992,
author = {Romano, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {periodic solutions; second order equation; subquadratic Hamiltonian system; dual action principle; subharmonics; solutions index},
language = {fre},
number = {4},
pages = {493-506},
publisher = {Dunod},
title = {Étude numérique des solutions périodiques d'une équation du second ordre},
url = {http://eudml.org/doc/193673},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Romano, M.
TI - Étude numérique des solutions périodiques d'une équation du second ordre
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 4
SP - 493
EP - 506
LA - fre
KW - periodic solutions; second order equation; subquadratic Hamiltonian system; dual action principle; subharmonics; solutions index
UR - http://eudml.org/doc/193673
ER -
References
top- [1] F. CLARKE et I. EKELAND, Nonlinear oscillation and boundary-value problems for Hamiltonian Systems, Arch. Rational Mech. Anal., An 78, 1982, p. 315-333. Zbl0514.34032MR653545
- [2] I. EKELAND, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag. Zbl0707.70003MR1051888
- [3] I. EKELAND et H. HOFER, Subharmonics for convex Nonautonomous Hamiltonian Systems, Comm. Pure Appl. Math. 40 (1987) 419-467. Zbl0601.58035MR865356
- [4] J. MAWHIN et M. WHILEM, Critical point and Hamiltonian mechanics, Springer-Verlag.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.