Interpolation de Lagrange par des splines quadratiques sur un quadrilatère de 2

F. Zedek

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 5, page 575-593
  • ISSN: 0764-583X

How to cite

top

Zedek, F.. "Interpolation de Lagrange par des splines quadratiques sur un quadrilatère de $\mathbb {R}^2$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.5 (1992): 575-593. <http://eudml.org/doc/193677>.

@article{Zedek1992,
author = {Zedek, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Lagrange interpolation problem; quadratic splines; error estimates},
language = {fre},
number = {5},
pages = {575-593},
publisher = {Dunod},
title = {Interpolation de Lagrange par des splines quadratiques sur un quadrilatère de $\mathbb \{R\}^2$},
url = {http://eudml.org/doc/193677},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Zedek, F.
TI - Interpolation de Lagrange par des splines quadratiques sur un quadrilatère de $\mathbb {R}^2$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 5
SP - 575
EP - 593
LA - fre
KW - Lagrange interpolation problem; quadratic splines; error estimates
UR - http://eudml.org/doc/193677
ER -

References

top
  1. [1] C. K. CHUI, Bivariate quadratic splines on criss cross triangulations, Proc. First Army Conf. dans Appl. Math. Comp. 1 (1984), 877-882. 
  2. [2] C. K. CHUI and R. H. WANG, On a bivariate B-spline basis, Scientia Sinica (Series A) Vol. 27, n° 11 (1984) 1129-1142. Zbl0559.41010MR794285
  3. [3] S. DEMKO, Interpolation by quadratic splines, J. Approx Theory 23 (1978) 392-400. Zbl0404.41001MR509568
  4. [4] G. FARIN, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design 3 (1986) 83-127. MR867116
  5. [5] G. FARIN, Piecewise triangular C1 surface strips, Comput. Aided Geom. Design 18 (1) (1986) 45-47. MR867116
  6. [6] G. FARIN, Curves and surfaces for computer aided geometric design, Academic Press, New York (1988). Zbl0694.68004MR974109
  7. [7] R. FRANKE, L. L. SCHUMAKER, A bibliography of multivariate approximation, dans Topics m Multivariate Approximation, C. K. Chui, L. L. Schumaker and F. I. Utreras ed., Academic Press, New York (1987) 275-335. Zbl0641.41002MR924839
  8. [8] G. HEINDL, Interpolation and approximation by piecewise quadratic C1 functions of two variables, I.S.N.M. 51, Birkhauser Verlag, Basel (1979) 146-161. Zbl0424.41020MR560670
  9. [9] W. J. KAMMERER, W. REDDIEN, R. S. VARGA, Quadratic interpolatory splines, Numer. Math. 22 (1974) 241-259. Zbl0271.65006MR381235
  10. [10] M. J. D. POWELL, Piecewise quadratic surface fitting for contour plotting, Software for Numerical Mathematics, D. J. Evans Ed. Academic Press, New York (1974) 253-272. MR362831
  11. [11] M. J. D. POWELL and M. A. SABIN, Piecewise quadratic approximations on triangles, dans ACM trans. Math. Software 3 (1972) 316-325. Zbl0375.41010MR483304
  12. [12] P. SABLONNIÈRE, Bases de Bernstein et approximants splines, Thèse de Doctorat ès-sciences, Université de Lille (juin 1982). 
  13. [13] P. SABLONNIÈRE, Interpolation by quadratic splines on triangles and squares, Computers in Industry 3 (1982) 45-52. 
  14. [14] P. SABLONNIÈRE, Bernstein-Bézier methods for the construction of bivariate spline approximant, Comput. Aided Geom. Design 2 (1985) 29-36. Zbl0586.65009MR828529
  15. [15] F. ZEDEK, Interpolation sur un domaine carré par des splines quadratiques à 2 variables, Thèse de Doctorat 3e cycle, Université de Lille (1985). 
  16. [16] P. B. ZWART, Multivariate splines with non degenerate partitions, dans SIAM J. Num. Analy. 10 (1973) 665-673. Zbl0261.65011MR326239

NotesEmbed ?

top

You must be logged in to post comments.