A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations
T. Lu; P. Neittaanmaki; X.-C. Tai
- Volume: 26, Issue: 6, page 673-708
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLu, T., Neittaanmaki, P., and Tai, X.-C.. "A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.6 (1992): 673-708. <http://eudml.org/doc/193681>.
@article{Lu1992,
author = {Lu, T., Neittaanmaki, P., Tai, X.-C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {fractional step method; finite element method; splitting-up method; splitting technique; Convergence; linear and nonlinear elliptic problems; quasilinear evolution equations; evolution Navier-Stokes equations},
language = {eng},
number = {6},
pages = {673-708},
publisher = {Dunod},
title = {A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations},
url = {http://eudml.org/doc/193681},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Lu, T.
AU - Neittaanmaki, P.
AU - Tai, X.-C.
TI - A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 6
SP - 673
EP - 708
LA - eng
KW - fractional step method; finite element method; splitting-up method; splitting technique; Convergence; linear and nonlinear elliptic problems; quasilinear evolution equations; evolution Navier-Stokes equations
UR - http://eudml.org/doc/193681
ER -
References
top- [1] A. J. CHORIN, Numerical solution of Navier-Stokes equations Math. Comp., 22 (1968), 745-762. Zbl0198.50103MR242392
- [2] C. CUVELIER, A. SEGAL, A. A. VAN STEENHOVEN, Finite element methods and Navier-Stokes equations, D. Reidel Publishing Company, 1986. Zbl0649.65059MR850259
- [3] J. DOUGLAS and H. RACHFORD, On the numencal solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 82 2 (1956), 421-439. Zbl0070.35401MR84194
- [4] G. GiRAULT and P.-A. RAVIART, Finite element methods for Navier-Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986. Zbl0585.65077MR540128
- [5] A. R. GOURLAY, Splitting-up methods for time dependent partial differential equations, in The state of the art in numerical analysis (proc. Conf. Univ. York, Heslington, 1976), Academic Press, London, 1977, pp. 757-796. MR451759
- [6] J. G. HEYWOOD and R. RANNACHER, Finite element approximation of the nonstationary Navier Stokes problem : I. Regularity of the solution and second-order error estimates for the spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311. Zbl0487.76035MR650052
- [7] M. KŘIŽEK and P. NEITTAANMÄKI, Finite element approximation to variational problems with applications, Pitman Monographs in Pure and Applied Mathematics 50, Longman, 1990. Zbl0708.65106MR1066462
- [8] O. A. LADYZHENSKAYA, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, Second Edition, 1969. Zbl0184.52603MR254401
- [9] O. A. LADYZHENSKAYA and V. I. RIVKIND, On the alternating method for the computation of a viscous incompressible fluid flow in cylindrical coordinates, Izv. Akad. Nauk, 35 (1971), 251-268. Zbl0222.76024
- [10] J. L. LIONS and R. TEMAM, Éclatement et décentralisation en calcul des variations, in « Proc. of Symposium on Optimization », Lecture Notes in Mathematics, Vol. 132, Springer Verlag, 1970, pp. 196-217. Zbl0223.49033MR467468
- [11] T. LU, P. NEITTAANMÄKI and X.-C. TAI, A parallel spliting-up method and its application to Naver-Stokes equations, Appl. Math. Lett., 4 (1989). 25-29. Zbl0718.65066MR1095644
- [12] G. I. MARCHUK, Methods of numerical mathematics, Springer-Verlag, 1982. Zbl0485.65003MR661258
- [13] D. W. PEACEMAN and H. H. RACHFORD, The numerical solution of parabolic and elliptic differential equations, SIAM, 3 (1955), 28-42. Zbl0067.35801MR71874
- [14] J. SHEN, On error estimates of projection methods for Navier-Stokes equations : First order schemes, To appear in SIAM J. Numer. Anal. Zbl0741.76051MR1149084
- [15] X. C. TAI and P. NEITTAANMÄKI, A parallel finite element splitting up method for parabolic problems, Numerical methods for partial differential equations, 7 (1991), 209-225. Zbl0747.65084MR1122113
- [16] R. TEMAMSur l'approximation de la solution des équations de Navier-Stokes par la méthode de pas fractionnaires (I), Arch. Rational Mech. Anal., 32 (1969), 135-153. Zbl0195.46001MR237973
- [17] R. TEMAM, Numerical analysis, D. Reidel Publishing Company, Dordrecht, North-Holland, 1973. Zbl0261.65001MR347099
- [18] R. TEMAMNavier-Stokes equations, North-Holland, 1977. Zbl0383.35057MR609732
- [19] N. N. YANENKO, The method of fractional steps for solving multi-dimensional problems of mathematical physics, Novosibirsk, Nauka, 1967. Zbl0209.47103
- [20] L. YING, Viscosity splitting method for three dimensional Navier-Stokes equations, Acta Math. Sinica New Series, No. 3, 4 (1988), 210-226. Zbl0673.35085MR965569
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.