A conservative particle approximation for a boundary advection-diffusion problem
B. Lucquin-Desreux; S. Mas-Gallic
- Volume: 26, Issue: 6, page 757-791
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLucquin-Desreux, B., and Mas-Gallic, S.. "A conservative particle approximation for a boundary advection-diffusion problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.6 (1992): 757-791. <http://eudml.org/doc/193684>.
@article{Lucquin1992,
author = {Lucquin-Desreux, B., Mas-Gallic, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {particle method; advection-diffusion problem; vortex method; finite difference; finite element; boundary integral equation; order of convergence},
language = {eng},
number = {6},
pages = {757-791},
publisher = {Dunod},
title = {A conservative particle approximation for a boundary advection-diffusion problem},
url = {http://eudml.org/doc/193684},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Lucquin-Desreux, B.
AU - Mas-Gallic, S.
TI - A conservative particle approximation for a boundary advection-diffusion problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 6
SP - 757
EP - 791
LA - eng
KW - particle method; advection-diffusion problem; vortex method; finite difference; finite element; boundary integral equation; order of convergence
UR - http://eudml.org/doc/193684
ER -
References
top- [1] C. ANDERSON, Observations on Vorticity Creation Boundary Conditions in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. Zbl0671.76030MR1001797
- [2] J. P. CHOQUIN, S. HUBERSON, Application de la méthode particulaire aux écoulements à grand nombre de Reynolds, 18e Congrès National d'Analyse Numérique, Puy St-Vincent (1985).
- [3] J. P. CHOQUIN, B. LUCQUIN-DESREUX, Accuracy of a deterministic particle method for Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 8 (1988), 1439-1458. Zbl0664.76029
- [4] A. CHORIN, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), p. 785. MR395483
- [5] G. H. COTTET, Boundary conditions and the deterministic vortex methods for the Navier-Stokes equations in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. Zbl0671.76047MR1001796
- [6] G. H. COTTET, S. GALLIC, A particle method to solve transport - diffusion equations - Part I : the linear case, Internal report n° 115, C.M.A.P., École Polytechnique, Palaiseau, France. Zbl0678.35077
- [7] G. H. COTTET, S. MAS-GALLIC, A particle method to solve the Navier-Stokes system, Numer. Math. 57 (1990), 1-23. Zbl0707.76029MR1065526
- [8] P. DEGOND, S. MAS-GALLIC, The weighted particle method for convection - diffusion equations, part I : the case of an isotropic viscosity, part II : the anisotropic case, Math. Comput. 53 (1989), 485-526. Zbl0676.65121MR983559
- [9] J. GOODMAN, Convergence of the random vortex method, Comm. Pure Appl. Math., 40 (1987), 189-220. Zbl0635.35077MR872384
- [10] S. HUBERSON, Modélisation asymptotique et numérique de noyaux tourbillonaires enroulés, Thèse d'état (1986), Université Pierre et Marie Curie.
- [11] S. HUBERSON, A. JOLLES, C. R. Acad. Sci. Paris 309, Série II, 445-448, Paris, 1989, and A Jollès, Résolution des équations de Navier-Stokes par des méthodes particules maillage, Thèse de Doctorat de l'Université, Université Pierre et Marie Curie, février 1989. Zbl0668.76121MR1022287
- [12] A. LEONARD, G. WINCKELMANS, Improved vortex methods for three-dimensional flows with application to the interactions of two vortex rings in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. Zbl0671.76025MR1001786
- [13] B. LUCQUIN-DESREUX, Particle approximation of the two dimensional Navier-Stokes equations, Rech. Aérospat. 4 (1987), 1-12. Zbl0619.76031
- [14] B. LUCQUIN-DESREUX, Méthode particulaire conservative avec condition à la limite en dimension 1, internal report, Lab. Anal. Num. 1990.
- [15] S. MAS-GALLIC, Thèse d'État de l'Université Pierre et Marie Curie, 1987 and C. R. Acad. Sci. Paris 305, série I, p. 431-434, 1987. Zbl0632.76104MR916346
- [16] S. MAS-GALLIC, C. R. Acad. Sci. Paris 310, série I, p. 465-468, 1990 and Une méthode particulaire déterministe incluant diffusion et conditions aux limites, internal report 90003, Lab. Anal. Num. 1990. Zbl0695.65069MR1046534
- [17] S. MAS-GALLIC, P. A. RAVIART, A particle method for first order symmetric systems, Numer. Math. 51 (1987), 323-352. Zbl0625.65084MR895090
- [18] F. PEPIN, Simulation of the flow past an impulsively started cylinder using a discrete vortex method, Thesis, California Institute of Technology, Pasadena, California (1990).
- [19] P. A. RAVIART, An analysis of particle methods, in Numerical Methods in Fluid Dynamics (F. Brezzi, ed.), Lecture Notes in Math., vol. 1127, Springer Verlag, Berlin 1985. Zbl0598.76003MR802214
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.