A conservative particle approximation for a boundary advection-diffusion problem

B. Lucquin-Desreux; S. Mas-Gallic

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 6, page 757-791
  • ISSN: 0764-583X

How to cite

top

Lucquin-Desreux, B., and Mas-Gallic, S.. "A conservative particle approximation for a boundary advection-diffusion problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.6 (1992): 757-791. <http://eudml.org/doc/193684>.

@article{Lucquin1992,
author = {Lucquin-Desreux, B., Mas-Gallic, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {particle method; advection-diffusion problem; vortex method; finite difference; finite element; boundary integral equation; order of convergence},
language = {eng},
number = {6},
pages = {757-791},
publisher = {Dunod},
title = {A conservative particle approximation for a boundary advection-diffusion problem},
url = {http://eudml.org/doc/193684},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Lucquin-Desreux, B.
AU - Mas-Gallic, S.
TI - A conservative particle approximation for a boundary advection-diffusion problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 6
SP - 757
EP - 791
LA - eng
KW - particle method; advection-diffusion problem; vortex method; finite difference; finite element; boundary integral equation; order of convergence
UR - http://eudml.org/doc/193684
ER -

References

top
  1. [1] C. ANDERSON, Observations on Vorticity Creation Boundary Conditions in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. Zbl0671.76030MR1001797
  2. [2] J. P. CHOQUIN, S. HUBERSON, Application de la méthode particulaire aux écoulements à grand nombre de Reynolds, 18e Congrès National d'Analyse Numérique, Puy St-Vincent (1985). 
  3. [3] J. P. CHOQUIN, B. LUCQUIN-DESREUX, Accuracy of a deterministic particle method for Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 8 (1988), 1439-1458. Zbl0664.76029
  4. [4] A. CHORIN, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), p. 785. MR395483
  5. [5] G. H. COTTET, Boundary conditions and the deterministic vortex methods for the Navier-Stokes equations in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. Zbl0671.76047MR1001796
  6. [6] G. H. COTTET, S. GALLIC, A particle method to solve transport - diffusion equations - Part I : the linear case, Internal report n° 115, C.M.A.P., École Polytechnique, Palaiseau, France. Zbl0678.35077
  7. [7] G. H. COTTET, S. MAS-GALLIC, A particle method to solve the Navier-Stokes system, Numer. Math. 57 (1990), 1-23. Zbl0707.76029MR1065526
  8. [8] P. DEGOND, S. MAS-GALLIC, The weighted particle method for convection - diffusion equations, part I : the case of an isotropic viscosity, part II : the anisotropic case, Math. Comput. 53 (1989), 485-526. Zbl0676.65121MR983559
  9. [9] J. GOODMAN, Convergence of the random vortex method, Comm. Pure Appl. Math., 40 (1987), 189-220. Zbl0635.35077MR872384
  10. [10] S. HUBERSON, Modélisation asymptotique et numérique de noyaux tourbillonaires enroulés, Thèse d'état (1986), Université Pierre et Marie Curie. 
  11. [11] S. HUBERSON, A. JOLLES, C. R. Acad. Sci. Paris 309, Série II, 445-448, Paris, 1989, and A Jollès, Résolution des équations de Navier-Stokes par des méthodes particules maillage, Thèse de Doctorat de l'Université, Université Pierre et Marie Curie, février 1989. Zbl0668.76121MR1022287
  12. [12] A. LEONARD, G. WINCKELMANS, Improved vortex methods for three-dimensional flows with application to the interactions of two vortex rings in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. Zbl0671.76025MR1001786
  13. [13] B. LUCQUIN-DESREUX, Particle approximation of the two dimensional Navier-Stokes equations, Rech. Aérospat. 4 (1987), 1-12. Zbl0619.76031
  14. [14] B. LUCQUIN-DESREUX, Méthode particulaire conservative avec condition à la limite en dimension 1, internal report, Lab. Anal. Num. 1990. 
  15. [15] S. MAS-GALLIC, Thèse d'État de l'Université Pierre et Marie Curie, 1987 and C. R. Acad. Sci. Paris 305, série I, p. 431-434, 1987. Zbl0632.76104MR916346
  16. [16] S. MAS-GALLIC, C. R. Acad. Sci. Paris 310, série I, p. 465-468, 1990 and Une méthode particulaire déterministe incluant diffusion et conditions aux limites, internal report 90003, Lab. Anal. Num. 1990. Zbl0695.65069MR1046534
  17. [17] S. MAS-GALLIC, P. A. RAVIART, A particle method for first order symmetric systems, Numer. Math. 51 (1987), 323-352. Zbl0625.65084MR895090
  18. [18] F. PEPIN, Simulation of the flow past an impulsively started cylinder using a discrete vortex method, Thesis, California Institute of Technology, Pasadena, California (1990). 
  19. [19] P. A. RAVIART, An analysis of particle methods, in Numerical Methods in Fluid Dynamics (F. Brezzi, ed.), Lecture Notes in Math., vol. 1127, Springer Verlag, Berlin 1985. Zbl0598.76003MR802214

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.