Partial regularization of the sum of two maximal monotone operators

P. Mahey; Pham Dinh Tao

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 3, page 375-392
  • ISSN: 0764-583X

How to cite

top

Mahey, P., and Tao, Pham Dinh. "Partial regularization of the sum of two maximal monotone operators." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.3 (1993): 375-392. <http://eudml.org/doc/193707>.

@article{Mahey1993,
author = {Mahey, P., Tao, Pham Dinh},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {regularization; inclusion problem; maximal monotone operators; convergence; iterations},
language = {eng},
number = {3},
pages = {375-392},
publisher = {Dunod},
title = {Partial regularization of the sum of two maximal monotone operators},
url = {http://eudml.org/doc/193707},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Mahey, P.
AU - Tao, Pham Dinh
TI - Partial regularization of the sum of two maximal monotone operators
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 3
SP - 375
EP - 392
LA - eng
KW - regularization; inclusion problem; maximal monotone operators; convergence; iterations
UR - http://eudml.org/doc/193707
ER -

References

top
  1. [1] H. ATTOUCH, Variational convergence for functions and operators, Pitman, 1984. Zbl0561.49012MR773850
  2. [2] D. P. BERTSEKAS and J. N. TSITSIKLIS, Parallel and Distributed Computation, Prentice-Hall Int., 1989. Zbl0743.65107
  3. [3] M. A. BOUGHAZI, Contribution à l'étude des algorithmes d'optimisation en Analyse des Données, Thèse de Doctorat, Université de Grenoble, 1987. 
  4. [4] H. BREZIS, Opérateurs maximaux monotones, Mathematics Studies 5, North Holland, 1973. 
  5. [5] H. BREZIS and P. L. LIONS, Produits infinis de résolvantes, Israel J. of Math.29, 4, 1978, pp. 329-345. Zbl0387.47038MR491922
  6. [6] F. BROWDER and W. PETRYSHIN, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. of Math. Anal and Appl. 20, 1967, pp. 197-228. Zbl0153.45701MR217658
  7. [7] J. LEMORDANT and T. PHAM DINH, Algorithme proximal pour la résolution numérique d'équations d'évolution en vison de bas niveau, preprint. 
  8. [8] P. L. LIONS, Une méthode itérative de résolution d'une inéquation variationnelle, Israel J. of Math. 31, 2, 1978, pp. 204-208. Zbl0395.49013MR516257
  9. [9] P. L. LIONS and B. MERCIER, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16, 6, 1979, pp. 964-979. Zbl0426.65050MR551319
  10. [10] P. MAHEY, H. VAN NGUYEN and D. T. PHAM, Proximal methods and decomposition of large convex programs, ARTEMIS RR877, 1992. 
  11. [11] B. MARTINET, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'État, Univ. de Grenoble, 1972. 
  12. [12] C. MICHELOT, Problème de localisation : propriétés géométriques etrésolution par des méthodes d'optimisation, Thèse de Doctorat, Université de Bourgogne, 1988. 
  13. [13] J. J. MOREAU, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. France 93, 1965, pp. 273-299. Zbl0136.12101MR201952
  14. [14] G. B. PASSTY, Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces, J. of Math, Anal and Appl. 72, 1979 pp. 383-390. Zbl0428.47039MR559375
  15. [15] G. PIERRA G., Decomposition through formalization in a product space, Math. Prog. 28, 1984, pp. 96-115. Zbl0523.49022MR727421
  16. [16] R. T. ROCKAFELLAR, Convex analysis, Princeton University Press, 1970. Zbl0193.18401MR274683
  17. [17] R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm in convex programming, SIAM J. on Control and Optim. 14, 1976, pp. 877-898. Zbl0358.90053MR410483
  18. [18] R. T. ROCKAFELLAR, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149, 1970, pp. 75-88. Zbl0222.47017MR282272
  19. [19] J. E. SPINGARN, Partial inverse of a monotone operator, Appl. Math. Optim. 10, 1983, pp. 247-265. Zbl0524.90072MR722489
  20. [20] G. STAMPACCHIA, Variational inequalities, in Theory and Applications of Monotone Operators, A. Ghizetti, 1969. Zbl0247.47050MR425699
  21. [21] A. YASSINE, Études adaptatives et comparatives de certains algorithmes en optimisation. Implémentations effectives et applications, Thèse de Doctorat, Université de Grenoble, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.