Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions

S. A. Nazarov

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 6, page 777-799
  • ISSN: 0764-583X

How to cite

top

Nazarov, S. A.. "Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.6 (1993): 777-799. <http://eudml.org/doc/193723>.

@article{Nazarov1993,
author = {Nazarov, S. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Neumann eigenvalue problem; asymptotic behaviour},
language = {eng},
number = {6},
pages = {777-799},
publisher = {Dunod},
title = {Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions},
url = {http://eudml.org/doc/193723},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Nazarov, S. A.
TI - Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 6
SP - 777
EP - 799
LA - eng
KW - Neumann eigenvalue problem; asymptotic behaviour
UR - http://eudml.org/doc/193723
ER -

References

top
  1. [1] E. SANCHEZ-PALENCIA, 1984, Perturbation of Eigenvalues in Thermoelasticity and Vibration of Systems with Concentrated Masses, Lecture Notes in Physics,195, Berlin, Heidelberg, New York : Springer, 346-368. Zbl0542.73006MR755735
  2. [2] E. SANCHEZ-PALENCIA, H. TCHTAT, 1984, Vibration de systèmes élastiques avec masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino, 42, 43-63. Zbl0658.73044MR834781
  3. [3] C. LEAL, J. SANCHEZ-HUBERT, 1989, Perturbation of the eigenvalues of a membrane with concentrated mass. Quart. Appl. Math., vol. 47, 93-103. Zbl0685.73025MR987898
  4. [4] U. A. GOLOVATII, S. A. NAZAROV, O. A. OLEINIK, 1990, Asymptotic decompositions of eigenvalues and eigenfunctins of problems on oscillating media with concentrated masses, Trudy Mat. inst. A.N S.S.S.R., 192, 42-60. Zbl0728.35077MR1097888
  5. [5] J. SANCHEZ-HUBERT, E. SANCHEZ-PALENCIA, 1989, Vibration and Coupling of Continuous Systems Asymptotic Methods, Berlin, Heidelberg, New York, London, Paris, Tokyo : Springer-Verlag. Zbl0698.70003MR996423
  6. [6] O. A. OLEINIK, G. A. YOSIFIAN, A. S. SHAMAEV, 1990, Mathematical Problems in Theory of Non-Homogeneous Media, Moscow : Izdat. Moskov. Universiteta. Zbl0768.73003
  7. [7] V. G. MAZ'YA, S. A. NAZAROV, B. A. PLAMENEVSKII, 1981, On the asymptotics of solutions of elliptic boundary value problems in domains perturbed irregularly, Probl. mat. anal., 8, Leningrad : izdat. Leningrad Universiteta, 72-153 (Russian). Zbl0491.35013MR658154
  8. [8] W. G. MAZJA, S. A. NASAROW, B. A. PLAMENEWSKI, 1990, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Bd. 1, Berlin : Akademie-Verlag. 
  9. [9] V. G. MAZ'YA, S. A. NAZAROV, B. A. PLAMEENVSKII, 1983, On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone, Matem. Sbornik, 122, 435-436 (Russian ; English transl. (1987) in Math. USSR Sbornik, 57, 317-349). Zbl0599.35056
  10. [10] S. A. NAZAROV, 1986, Justification of asymptotic expansions of the eigenvalues of nonselfadjoint singularly perturbed elliptic boundary value problems, Matem.sbornik, 129, 307-337 (Russian ; English transl. (1987) in Math. USSR Sbornik,57, 317-349). Zbl0618.35005MR837128
  11. [11] V. G. MAZ'YA, S. A. NAZAROV, 1989, On the singularities of solutions of the Neumann problem at a conical point, Sibirsk. Matem. Zh., 30, 52-63 (Russian). Zbl0701.35021MR1010835
  12. [12] V. A. KONDRAT'EV, 1967, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Mat. Obshch., 16, 209-292 (Russian ; English transl. (1967) in Trans. Moscow Math. Soc., 16). Zbl0162.16301MR226187
  13. [13] S. A. NAZAROV, B. A. PLAMENEVSKII, 1991, Elliptic Problems in Domainswith Piecewise Smooth Boundaries, Moscow : Nauka (Russian). 
  14. [14] S. A. NAZAROV, 1989, On the Sanchez-Palencia problem with the Neumann boundary conditions, Izvestija VUZ. Matem. No. 11, 60-66 (Russian). Zbl0801.35092MR1045104
  15. [15] I. C. GOGBERG, M. G. KREIN, 1965, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Moscow : Nauka (Russian ; English transl. (1969). Amer. Math. Soc., Providence, R.I.). Zbl0181.13504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.