The perturbed Tikhonov's algorithm and some of its applications

P. Tossings

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 2, page 189-221
  • ISSN: 0764-583X

How to cite

top

Tossings, P.. "The perturbed Tikhonov's algorithm and some of its applications." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.2 (1994): 189-221. <http://eudml.org/doc/193736>.

@article{Tossings1994,
author = {Tossings, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hilbert space; algorithm; Tikhonov's regularization; numerical tests; nonlinear monotone operator equations},
language = {eng},
number = {2},
pages = {189-221},
publisher = {Dunod},
title = {The perturbed Tikhonov's algorithm and some of its applications},
url = {http://eudml.org/doc/193736},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Tossings, P.
TI - The perturbed Tikhonov's algorithm and some of its applications
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 2
SP - 189
EP - 221
LA - eng
KW - Hilbert space; algorithm; Tikhonov's regularization; numerical tests; nonlinear monotone operator equations
UR - http://eudml.org/doc/193736
ER -

References

top
  1. [1] P. ALART, 1985, Contribution à la résolution numérique des inclusions différentielles, Thèse de troisième cycle, Université de Montpellier. 
  2. [2] P. ALART, B. LEMAIRE, Penalization in non classical convex programming via variational convergence, to appear in Mathematical Programming. Zbl0748.90051
  3. [3] P. ALEXANDRE, 1988, Méthode des centres et pénalités extérieures associées à une méthode proximale en optimisation convexe, Mémoire de licence en informatique, Université de Liège. 
  4. [4] H. ATTOUCH, 1984, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman, London. Zbl0561.49012MR773850
  5. [5] H. ATTOUCH, R. J. B. WETS, 1986, Isometries for the Legendre-Fenchel Transform. Trans. A.M.S. 296, 1. 33-60. Zbl0607.49009MR837797
  6. [6] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : I. The Epigraphical Distance, Techn. Report, University of California-Davis. Zbl0753.49007
  7. [7] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : II. A Framework for nonlinear Conditioning, Techn. Report, AVA-MAC, Université de Perpignan. Zbl0793.49005
  8. [8] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : III. ε-approximate Solutions, WP-87-25 (Title : Lipschitzian Stability of ε-Approximate Solutions in Convex Optimization), IIASA, Laxenburg. Zbl0802.49009
  9. [9] A. AUSLENDER, 1987, Numerical Methods for Non-differentiable Convex Optimization, Mathematical Programming Study, 30, 102-126. Zbl0616.90052MR874134
  10. [10] A. AUSLENDER, J. P. CROUZEIX, P. FEDIT, 1987, Penalty Proximal Methods in Convex Programming, Journal of Optimization Theory and Applications, 55,1-21. Zbl0622.90065MR915675
  11. [11] A. BENSOUSSAN, P. KENNETH, 1968, Sur l'analogie entre les méthodes de régularisation et de pénalisation. RAIRO. 13, 13-26. Zbl0177.48105MR242497
  12. [12] H. BREZIS, 1973, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, 5. Zbl0252.47055MR348562
  13. [13] S. COLLINET, 1988, Association point proximal et pénalité exponentielle en programmation convexe, Mémoire de licence en informatique, Université de Liège. 
  14. [14] P. FEDIT, 1985, Contribution aux méthodes numériques en programmation mathématique non différentiable, Thèse de troisième cycle, Université de Clermont II. 
  15. [15] S. GOWDA, M. TEBOULLE, 1990, A comparison of constraint qualifications in infinite-dimensional convex programming, SIAM J. Control and Optimization, 28, 925-935. Zbl0713.49042MR1051630
  16. [16] J. HARTUNG, 1980, On Exponential Penalty Function Methods, Math. Operationstorsch, Statist., Ser. Optimization, 11, 71-84. Zbl0514.90077MR608906
  17. [17] A. A. KAPLAN, 1973, Characteristic Properties of Penalty Functions, English Transl. in Soviet Math. Dokl., 14, 849-852. Zbl0285.90065MR439194
  18. [18] A. A. KAPLAN, 1978, On a Convex programming Method with Internal Regularization, English Transl. in Soviet. Math. Dokl, 19, 795-799. Zbl0423.90061
  19. [19] B. LEMAIRE, 1971, Régularisation et pénalisation en optimisation convexe, Séminaire d'analyse convexe, exposé 17, Institut de Math., Université des Sciences et Techniques du Languedoc, Montpellier. Zbl0353.90072MR638215
  20. [20] B. LEMAIRE, 1988, Coupling Optimization Methods and Variational Convergence, Trends in Mathematical Optimization International Series of Num. Math., K. H. Hoffmann, J. B. Hiriart-Urruty, C. Lemarechal, J. Zowe, editors, Birkhauser Verlag, Basel, 84, 163-179. Zbl0633.49010MR1017952
  21. [21] B. LEMAIRE, 1987, The proximal Algorithm, in « New Methods of Optimization and their Industrial Use », Proc. Symp. Pau and Paris, Int. Ser. Numer. Math.,87, 73-77. Zbl0692.90079MR1001168
  22. [22] B. MARTINET, 1972, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'Etat, Université de Grenoble. 
  23. [23] G. J. MINTY, 1964, On the Monotonicity of the Gradient of a Convex Function, Pacific J. Math., 14, 243-247. Zbl0123.10601MR167859
  24. [24] K. MOUALLIF, 1987, Sur la convergence d'une méthode associant pénalisation et régularisation, Bull. Soc. Roy. Sc. de Liège, 56, 175-180. Zbl0641.90065MR911354
  25. [25] K. MOUALLIF, 1989, Convergence variationnelle et méthodes perturbée pour les problèmes d'optimisation et de point selle, Thèse d'Etat, Université de Liège. 
  26. [26] K. MOUALLIF, P. TOSSINGS, 1987, Une méthode de pénalisation exponentielle associée à une régularisation proximale, Bull. Soc. Roy. Sc. de Liège, 56, 181-192. Zbl0623.90062MR911355
  27. [27] K. MOUALLIF, P. TOSSINGS, 1990, Variational Metric and Exponential Penalization, JOTA, 67, 185-192. Zbl0688.90043MR1080273
  28. [28] F. MURPHY, 1974, A Class of Exponential Penalty Functions, SIAM Journal Control, 12, 679-687. Zbl0257.90050MR363486
  29. [29] R. T. ROCKAFELLAR, 1970, Convex Analysis, Univ. Press, Princeton, New-Jersey. Zbl0193.18401MR274683
  30. [30] R. T. ROCKAFELLAR, 1970, On the Maximal Monotonicity of Subdifferential Mappings, Pacific J. of Math., 33, 209-216. Zbl0199.47101MR262827
  31. [31] R. T. ROCKAFELLAR, 1976, Augmented Lagrangians and Applications of the proximal Point Algorithm in Convex Programming, Math. of Operations Research, 1, 97-116. Zbl0402.90076MR418919
  32. [32] R. T. ROCKAFELLAR, 1976, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 14, 877-898. Zbl0358.90053MR410483
  33. [33] J. J. STRODIOT, V. H. NGUYEN, 1979, An Exponential Penalty Method for Nondifferentiable Minimax Problems with General Constraints, Journal of Opt. Theory and Appl, 27, 205-219. Zbl0373.90064MR529860
  34. [34] J. J. STRODIOT, V. H. NGUYEN, 1988, On the Numerical Treatment of the Inclusion 0 є ∂f(x), Topics in Nonsmooth Mechanics, J. J. Moreau, P.D. Panagiotopoulos, G. Strang, eds., Birkhauser Verlag, Basel. Zbl0663.65064MR957086
  35. [35] A. TIKHONOV, V. ARSENINE, 1976, Méthodes de résolution de problèmes mal posés, Editions MIR de Moscou, traduction française. MR455367
  36. [36] P. TOSSINGS, 1987, Optimisation convexe, Séminaire d'analyse fonctionnelle appliquée, Université de Liège. 
  37. [37] P. TOSSINGS, 1990, Sur l'ordre de convergence de l'algorithme du point proximal perturbé, Bull. Soc. Roy. Sc. de Liège, 58,459-466. Zbl0686.90032MR1039675
  38. [38] P. TOSSINGS, 1990, Sur les zéros des opérateurs maximaux monotones et applications, Thèse d'Etat, Université de Liège. 
  39. [39] P. TOSSINGS, 1991, Convergence variationnelle et opérateurs maximaux monoteurs d'un espace de Hilbert réel, Bull. Soc. Roy. Sc. de Liège; 60, 103-132. Zbl0733.47047MR1117786
  40. [40] P. TOSSINGS, The Perturbed Proximal Point Algorithm and Some of its Applications, to appear in Applied mathematics and optimization. Zbl0791.65039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.