The perturbed Tikhonov's algorithm and some of its applications
- Volume: 28, Issue: 2, page 189-221
- ISSN: 0764-583X
Access Full Article
topHow to cite
topTossings, P.. "The perturbed Tikhonov's algorithm and some of its applications." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.2 (1994): 189-221. <http://eudml.org/doc/193736>.
@article{Tossings1994,
author = {Tossings, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hilbert space; algorithm; Tikhonov's regularization; numerical tests; nonlinear monotone operator equations},
language = {eng},
number = {2},
pages = {189-221},
publisher = {Dunod},
title = {The perturbed Tikhonov's algorithm and some of its applications},
url = {http://eudml.org/doc/193736},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Tossings, P.
TI - The perturbed Tikhonov's algorithm and some of its applications
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 2
SP - 189
EP - 221
LA - eng
KW - Hilbert space; algorithm; Tikhonov's regularization; numerical tests; nonlinear monotone operator equations
UR - http://eudml.org/doc/193736
ER -
References
top- [1] P. ALART, 1985, Contribution à la résolution numérique des inclusions différentielles, Thèse de troisième cycle, Université de Montpellier.
- [2] P. ALART, B. LEMAIRE, Penalization in non classical convex programming via variational convergence, to appear in Mathematical Programming. Zbl0748.90051
- [3] P. ALEXANDRE, 1988, Méthode des centres et pénalités extérieures associées à une méthode proximale en optimisation convexe, Mémoire de licence en informatique, Université de Liège.
- [4] H. ATTOUCH, 1984, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman, London. Zbl0561.49012MR773850
- [5] H. ATTOUCH, R. J. B. WETS, 1986, Isometries for the Legendre-Fenchel Transform. Trans. A.M.S. 296, 1. 33-60. Zbl0607.49009MR837797
- [6] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : I. The Epigraphical Distance, Techn. Report, University of California-Davis. Zbl0753.49007
- [7] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : II. A Framework for nonlinear Conditioning, Techn. Report, AVA-MAC, Université de Perpignan. Zbl0793.49005
- [8] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : III. ε-approximate Solutions, WP-87-25 (Title : Lipschitzian Stability of ε-Approximate Solutions in Convex Optimization), IIASA, Laxenburg. Zbl0802.49009
- [9] A. AUSLENDER, 1987, Numerical Methods for Non-differentiable Convex Optimization, Mathematical Programming Study, 30, 102-126. Zbl0616.90052MR874134
- [10] A. AUSLENDER, J. P. CROUZEIX, P. FEDIT, 1987, Penalty Proximal Methods in Convex Programming, Journal of Optimization Theory and Applications, 55,1-21. Zbl0622.90065MR915675
- [11] A. BENSOUSSAN, P. KENNETH, 1968, Sur l'analogie entre les méthodes de régularisation et de pénalisation. RAIRO. 13, 13-26. Zbl0177.48105MR242497
- [12] H. BREZIS, 1973, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, 5. Zbl0252.47055MR348562
- [13] S. COLLINET, 1988, Association point proximal et pénalité exponentielle en programmation convexe, Mémoire de licence en informatique, Université de Liège.
- [14] P. FEDIT, 1985, Contribution aux méthodes numériques en programmation mathématique non différentiable, Thèse de troisième cycle, Université de Clermont II.
- [15] S. GOWDA, M. TEBOULLE, 1990, A comparison of constraint qualifications in infinite-dimensional convex programming, SIAM J. Control and Optimization, 28, 925-935. Zbl0713.49042MR1051630
- [16] J. HARTUNG, 1980, On Exponential Penalty Function Methods, Math. Operationstorsch, Statist., Ser. Optimization, 11, 71-84. Zbl0514.90077MR608906
- [17] A. A. KAPLAN, 1973, Characteristic Properties of Penalty Functions, English Transl. in Soviet Math. Dokl., 14, 849-852. Zbl0285.90065MR439194
- [18] A. A. KAPLAN, 1978, On a Convex programming Method with Internal Regularization, English Transl. in Soviet. Math. Dokl, 19, 795-799. Zbl0423.90061
- [19] B. LEMAIRE, 1971, Régularisation et pénalisation en optimisation convexe, Séminaire d'analyse convexe, exposé 17, Institut de Math., Université des Sciences et Techniques du Languedoc, Montpellier. Zbl0353.90072MR638215
- [20] B. LEMAIRE, 1988, Coupling Optimization Methods and Variational Convergence, Trends in Mathematical Optimization International Series of Num. Math., K. H. Hoffmann, J. B. Hiriart-Urruty, C. Lemarechal, J. Zowe, editors, Birkhauser Verlag, Basel, 84, 163-179. Zbl0633.49010MR1017952
- [21] B. LEMAIRE, 1987, The proximal Algorithm, in « New Methods of Optimization and their Industrial Use », Proc. Symp. Pau and Paris, Int. Ser. Numer. Math.,87, 73-77. Zbl0692.90079MR1001168
- [22] B. MARTINET, 1972, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'Etat, Université de Grenoble.
- [23] G. J. MINTY, 1964, On the Monotonicity of the Gradient of a Convex Function, Pacific J. Math., 14, 243-247. Zbl0123.10601MR167859
- [24] K. MOUALLIF, 1987, Sur la convergence d'une méthode associant pénalisation et régularisation, Bull. Soc. Roy. Sc. de Liège, 56, 175-180. Zbl0641.90065MR911354
- [25] K. MOUALLIF, 1989, Convergence variationnelle et méthodes perturbée pour les problèmes d'optimisation et de point selle, Thèse d'Etat, Université de Liège.
- [26] K. MOUALLIF, P. TOSSINGS, 1987, Une méthode de pénalisation exponentielle associée à une régularisation proximale, Bull. Soc. Roy. Sc. de Liège, 56, 181-192. Zbl0623.90062MR911355
- [27] K. MOUALLIF, P. TOSSINGS, 1990, Variational Metric and Exponential Penalization, JOTA, 67, 185-192. Zbl0688.90043MR1080273
- [28] F. MURPHY, 1974, A Class of Exponential Penalty Functions, SIAM Journal Control, 12, 679-687. Zbl0257.90050MR363486
- [29] R. T. ROCKAFELLAR, 1970, Convex Analysis, Univ. Press, Princeton, New-Jersey. Zbl0193.18401MR274683
- [30] R. T. ROCKAFELLAR, 1970, On the Maximal Monotonicity of Subdifferential Mappings, Pacific J. of Math., 33, 209-216. Zbl0199.47101MR262827
- [31] R. T. ROCKAFELLAR, 1976, Augmented Lagrangians and Applications of the proximal Point Algorithm in Convex Programming, Math. of Operations Research, 1, 97-116. Zbl0402.90076MR418919
- [32] R. T. ROCKAFELLAR, 1976, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 14, 877-898. Zbl0358.90053MR410483
- [33] J. J. STRODIOT, V. H. NGUYEN, 1979, An Exponential Penalty Method for Nondifferentiable Minimax Problems with General Constraints, Journal of Opt. Theory and Appl, 27, 205-219. Zbl0373.90064MR529860
- [34] J. J. STRODIOT, V. H. NGUYEN, 1988, On the Numerical Treatment of the Inclusion 0 є ∂f(x), Topics in Nonsmooth Mechanics, J. J. Moreau, P.D. Panagiotopoulos, G. Strang, eds., Birkhauser Verlag, Basel. Zbl0663.65064MR957086
- [35] A. TIKHONOV, V. ARSENINE, 1976, Méthodes de résolution de problèmes mal posés, Editions MIR de Moscou, traduction française. MR455367
- [36] P. TOSSINGS, 1987, Optimisation convexe, Séminaire d'analyse fonctionnelle appliquée, Université de Liège.
- [37] P. TOSSINGS, 1990, Sur l'ordre de convergence de l'algorithme du point proximal perturbé, Bull. Soc. Roy. Sc. de Liège, 58,459-466. Zbl0686.90032MR1039675
- [38] P. TOSSINGS, 1990, Sur les zéros des opérateurs maximaux monotones et applications, Thèse d'Etat, Université de Liège.
- [39] P. TOSSINGS, 1991, Convergence variationnelle et opérateurs maximaux monoteurs d'un espace de Hilbert réel, Bull. Soc. Roy. Sc. de Liège; 60, 103-132. Zbl0733.47047MR1117786
- [40] P. TOSSINGS, The Perturbed Proximal Point Algorithm and Some of its Applications, to appear in Applied mathematics and optimization. Zbl0791.65039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.