On the coupling of elliptic and hyperbolic nonlinear differential equations

G. Aguilar; F. Lisbona

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 4, page 399-417
  • ISSN: 0764-583X

How to cite

top

Aguilar, G., and Lisbona, F.. "On the coupling of elliptic and hyperbolic nonlinear differential equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.4 (1994): 399-417. <http://eudml.org/doc/193745>.

@article{Aguilar1994,
author = {Aguilar, G., Lisbona, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {coupling conditions; regularisation; interface conditions},
language = {eng},
number = {4},
pages = {399-417},
publisher = {Dunod},
title = {On the coupling of elliptic and hyperbolic nonlinear differential equations},
url = {http://eudml.org/doc/193745},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Aguilar, G.
AU - Lisbona, F.
TI - On the coupling of elliptic and hyperbolic nonlinear differential equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 4
SP - 399
EP - 417
LA - eng
KW - coupling conditions; regularisation; interface conditions
UR - http://eudml.org/doc/193745
ER -

References

top
  1. [1] G. AGUILAR, F. LISBONA, Singular Perturbation analysis of the coupling of elliptic and hyperbolic differential equations, Equadiff 91. International Conference on Differential Equations, Edited by C. Perelló, C. Simó and J. Solá Morales, World Scientific, Singapore, New Jersey, London, Hong Kong, 253-257. Zbl0938.35510MR1242246
  2. [2] C. BARDOS, A Y. LEROUX, J. C. NEDÉLEC, 1979, First order quasilinear equations with boundary conditions, Comm In Part Diff Equations, 4 (9) 1017-1034. Zbl0418.35024MR542510
  3. [3] F. GASTALDI, A. QUARTERONI, 1989, On the coupling of hyperbolic and parabolic Systems analytical and numerical approach, Appl. Numer. Math., 6, 3-31. Zbl0686.65084MR1045016
  4. [4] F. GASTALDI, A. QUARTERONI, G SACCHI LANDRIANI, 1990, On the coupling of two dimensional hyperbolic and elliptic equations analytical and numerical approach, Domain decomposition methods for partial differential equations, III, SIAM, Philaderphia, 22-63 Zbl0709.65092MR1064336
  5. [5] J. LORENZ, 1981, Nonlinear boundary value problems with turning points and properties of difference schemes, Lecture Notes in Math, 942, 150-169. Zbl0487.34067MR679352
  6. [6] J. LORENZ, 1984, Analysis of difference schemes for a stationary shock problem, SIAM, J. Numer. Anal., 21, 1038-1052. Zbl0574.65103MR765505
  7. [7] J. SCHRODER, 1980, Operator Inequalities, Academic Press, New York, London, Toronto, Sydney and San Francisco, 1980. Zbl0455.65039MR578001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.