On absorbing boundary conditions for quantum transport equations

A. Arnold

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 7, page 853-872
  • ISSN: 0764-583X

How to cite

top

Arnold, A.. "On absorbing boundary conditions for quantum transport equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.7 (1994): 853-872. <http://eudml.org/doc/193762>.

@article{Arnold1994,
author = {Arnold, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quantum transport equations; Wigner equation; absorbing boundary conditions; boundary value problems},
language = {eng},
number = {7},
pages = {853-872},
publisher = {Dunod},
title = {On absorbing boundary conditions for quantum transport equations},
url = {http://eudml.org/doc/193762},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Arnold, A.
TI - On absorbing boundary conditions for quantum transport equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 7
SP - 853
EP - 872
LA - eng
KW - quantum transport equations; Wigner equation; absorbing boundary conditions; boundary value problems
UR - http://eudml.org/doc/193762
ER -

References

top
  1. [1] A. ARNOLD, P. A. MARKOWICH, N. MAUSER, 1991, The one-dimensional periodic Bloch-Poisson equation, M3AS, 1, 83-112. Zbl0828.34073MR1105009
  2. [2] A. ARNOLD, C. RINGHOFER, 1995, An operator splitting method forthe Wigner-Poisson problem, to appear in SIAM J. Num. Anal. Zbl0860.65143MR1360463
  3. [3] F. A. BUOT, K. L. JENSEN, 1990, Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices, Phys. Rev. B., 42, 9429-9457. 
  4. [4] M. CESSENAT, 1985, Théorèmes de trace pour des espaces de fonctions de la neutronique, C. R. Acad. Sc. Paris, tome 300, série I, n° 3, 89-92. Zbl0648.46028MR777741
  5. [5] P. DEGOND, P. A. MARKOWICH, 1990, A quantum transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone, Modélisation Mathématique et Analyse Numérique, 24, 697-710. Zbl0742.35046MR1080715
  6. [6] B. ENGQUIST, A. MAJDA, 1977, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 629-651. Zbl0367.65051MR436612
  7. [7] W. R. FRENSLEY, 1987, Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B, 36, 1570-1580. 
  8. [8] T. HA-DUONG, P. JOLY, 1990, On the stability analysis of boundary conditions for the wave equation by energy methods, Part I: The homogeneous case, Rapports de Recherche 1306, INRIA. Zbl0829.35063
  9. [9] L. HALPERN, J. RAUCH, 1987, Error analysis for absorbing boundary conditions, Numer. Math., 51, 459-467. Zbl0656.35076MR902101
  10. [10] N. KLUKSDAHL, A. M. KRIMAN, D. K. FERRY, C. RINGHOFER, 1989, Selfconsistent study of the resonant tunneling diode, Phys. Rev. B., 39, 7720-7735. 
  11. [11] H. O. KREISS, 1970, Initial boundary value problems for hyperbolic Systems, Comm. Pure Appl. Math., 23,277-298. Zbl0193.06902MR437941
  12. [12] H. O. KREISS, J. LORENZ, 1989, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, San Diego. Zbl0689.35001MR998379
  13. [13] P. A. MARKOWICH, C. RINGHOFER, 1989, An analysis of the quantum Liouville equation, Z. angew. Math. Mech., 69, 121-127. Zbl0682.46047MR990011
  14. [14] P. A. MARKOWICH, C. RINGHOFER, C. SCHMEISER, 1990, Semiconductor Equations, Springer-Verlag, Wien, New York. Zbl0765.35001MR1063852
  15. [15] F. NIER, 1993, Asymptotic analysis of a scaled Wigner equation and quantum scattering, To appear in M3AS. Zbl0870.45003
  16. [16] C. RINGHOFER, D. FERRY, N. KLUKSDAHL, 1989, Absorbing boundary conditions for the simulation of quantum transport phenomena, Transport Theory and Statistical Physics, 18, 331-346. Zbl0703.35163MR1026635
  17. [17] D. ROBERT, 1987, Autour de l'Approximation Semi-classique, Birkhauser, Boston. Zbl0621.35001MR897108
  18. [18] M. A. SHUBIN, 1987, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, Heidelberg. Zbl0616.47040MR883081
  19. [19] H. STEINRÜCK, 1991, The one-dimensional Wigner-Poisson problem and its relation to the Schrödinger-Poisson problem, SIAM J. Math. Anal., 22, 957-972. Zbl0738.35077MR1112058
  20. [20] V. I. TATARSKII, 1983, The Wigner representation of quantum mechanics, Sov. Phys. Usp., 26, 311-327. MR730012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.