Fourier-Chebyshev pseudospectral methods for the two-dimensional Navier-Stokes equations
- Volume: 29, Issue: 3, page 303-337
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGuo, Ben-Yu, and Li, Jian. "Fourier-Chebyshev pseudospectral methods for the two-dimensional Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.3 (1995): 303-337. <http://eudml.org/doc/193775>.
@article{Guo1995,
author = {Guo, Ben-Yu, Li, Jian},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {generalized stability; convergence},
language = {eng},
number = {3},
pages = {303-337},
publisher = {Dunod},
title = {Fourier-Chebyshev pseudospectral methods for the two-dimensional Navier-Stokes equations},
url = {http://eudml.org/doc/193775},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Guo, Ben-Yu
AU - Li, Jian
TI - Fourier-Chebyshev pseudospectral methods for the two-dimensional Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 3
SP - 303
EP - 337
LA - eng
KW - generalized stability; convergence
UR - http://eudml.org/doc/193775
ER -
References
top- [1] D. GOTTLIEB and S. A. ORSZAG, Numerical Analysis of Spectral Methods, CBMS-NSF, SIAM, Philadelphia, 1977. Zbl0412.65058
- [2] Y. MADAY and A. QUARTERONI, Spectral and pseudospectral approximations of the Navier-Stokes equations, SIAM, J. Numer. Anal., 19, 1982, 761-780. Zbl0503.76035MR664883
- [3] Kuo PEN-YU, The convergence of the spectral scheme for solving two-dimensional vorticity equation, J. Comp. Math., 1, 1983, 353-362. Zbl0599.76030MR838695
- [4] GUO BEN-YU, Spectral method for solving Navier-Stokes equation, Scientia Sinica, 28, 1985, 1139-1153. Zbl0626.76034MR828694
- [5] Y. MADAY and B. METIVET, Chebyshev spectral approximation of Navier-Stokes equations in a two dimensional domain, Model. Math. et Anal. Numer., 21, 1987, 93-123. Zbl0607.76024MR882688
- [6] GUO BEN-YU and MA HE-PING, The Fourier pseudospectral method for three-dimensional vorticity equations, Acta Math. Appl. Sinica, 4, 1988, 55-68. Zbl0691.35081MR958583
- [7] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI and T. A. ZANG, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988. Zbl0658.76001MR917480
- [8] Guo BEN-YU, Ma HE-PING, Cao WEI-MING and Huang HUI, The Fourier-Chebyshev spectral method for solving two-dimensional unsteady vorticity equations, J. Comp. Phys., 101, 1992, 207-217. Zbl0757.76047MR1173346
- [9] Cao WEI-MING and Guo BEN-YU, Fourier-Chebyshev spectral method for three-dimensional voriticity equation with unilaterally periodic boundary condition, Appl. Math. J. of Chinese Uni, 7, 1992,350-366. Zbl0766.76070MR1193568
- [10] Guo BEN-YU and Li JIAN, Fourier-Chebyshev pseudospectral method for two-dimensional vorticity equation, Numer. Math., 66, 1994, 329-346. Zbl0796.76069MR1246961
- [11] R. J. ROACHE, Computational Fluid Dynamics, 2'nd edition, Hermosa Publisher, Albuquerque, 1976. Zbl0251.76002MR411358
- [12] Y. MADAY and A. QUARTERONI, Legendre and Chebyshev spectral approximations of Burgers' equation, Numer. Math., 37, 1981, 321-332. Zbl0452.41007MR627106
- [13] C. CANUTO and A. QUARTERONI, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38, 1982, 67-86. Zbl0567.41008MR637287
- [14] C. CANUTO and A. QUARTERONI, Variational methods in the theoretical analysis of spectral approximations, in Spectral Methods for Partial Differential Equations, 55-78, éd. by Voigt, R. G., Gottlieb, D. and Hussaini, M. Y., SIAM-CBMS, Philadelphia, 1984. Zbl0539.65080MR758262
- [15] Guo BEN-YU, Difference Methods for Partial Differential Equations, Science Press, Beijing, 1988.
- [16] Ma HE-PING and Guo BEN-YU, The Chebyshev spectral method for Burgers-like equations, J. Comp. Math., 6, 1988, 48-53. Zbl0641.65084MR958603
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.