Fourier-Chebyshev pseudospectral methods for the two-dimensional Navier-Stokes equations

Ben-Yu Guo; Jian Li

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 3, page 303-337
  • ISSN: 0764-583X

How to cite

top

Guo, Ben-Yu, and Li, Jian. "Fourier-Chebyshev pseudospectral methods for the two-dimensional Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.3 (1995): 303-337. <http://eudml.org/doc/193775>.

@article{Guo1995,
author = {Guo, Ben-Yu, Li, Jian},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {generalized stability; convergence},
language = {eng},
number = {3},
pages = {303-337},
publisher = {Dunod},
title = {Fourier-Chebyshev pseudospectral methods for the two-dimensional Navier-Stokes equations},
url = {http://eudml.org/doc/193775},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Guo, Ben-Yu
AU - Li, Jian
TI - Fourier-Chebyshev pseudospectral methods for the two-dimensional Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 3
SP - 303
EP - 337
LA - eng
KW - generalized stability; convergence
UR - http://eudml.org/doc/193775
ER -

References

top
  1. [1] D. GOTTLIEB and S. A. ORSZAG, Numerical Analysis of Spectral Methods, CBMS-NSF, SIAM, Philadelphia, 1977. Zbl0412.65058
  2. [2] Y. MADAY and A. QUARTERONI, Spectral and pseudospectral approximations of the Navier-Stokes equations, SIAM, J. Numer. Anal., 19, 1982, 761-780. Zbl0503.76035MR664883
  3. [3] Kuo PEN-YU, The convergence of the spectral scheme for solving two-dimensional vorticity equation, J. Comp. Math., 1, 1983, 353-362. Zbl0599.76030MR838695
  4. [4] GUO BEN-YU, Spectral method for solving Navier-Stokes equation, Scientia Sinica, 28, 1985, 1139-1153. Zbl0626.76034MR828694
  5. [5] Y. MADAY and B. METIVET, Chebyshev spectral approximation of Navier-Stokes equations in a two dimensional domain, Model. Math. et Anal. Numer., 21, 1987, 93-123. Zbl0607.76024MR882688
  6. [6] GUO BEN-YU and MA HE-PING, The Fourier pseudospectral method for three-dimensional vorticity equations, Acta Math. Appl. Sinica, 4, 1988, 55-68. Zbl0691.35081MR958583
  7. [7] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI and T. A. ZANG, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988. Zbl0658.76001MR917480
  8. [8] Guo BEN-YU, Ma HE-PING, Cao WEI-MING and Huang HUI, The Fourier-Chebyshev spectral method for solving two-dimensional unsteady vorticity equations, J. Comp. Phys., 101, 1992, 207-217. Zbl0757.76047MR1173346
  9. [9] Cao WEI-MING and Guo BEN-YU, Fourier-Chebyshev spectral method for three-dimensional voriticity equation with unilaterally periodic boundary condition, Appl. Math. J. of Chinese Uni, 7, 1992,350-366. Zbl0766.76070MR1193568
  10. [10] Guo BEN-YU and Li JIAN, Fourier-Chebyshev pseudospectral method for two-dimensional vorticity equation, Numer. Math., 66, 1994, 329-346. Zbl0796.76069MR1246961
  11. [11] R. J. ROACHE, Computational Fluid Dynamics, 2'nd edition, Hermosa Publisher, Albuquerque, 1976. Zbl0251.76002MR411358
  12. [12] Y. MADAY and A. QUARTERONI, Legendre and Chebyshev spectral approximations of Burgers' equation, Numer. Math., 37, 1981, 321-332. Zbl0452.41007MR627106
  13. [13] C. CANUTO and A. QUARTERONI, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38, 1982, 67-86. Zbl0567.41008MR637287
  14. [14] C. CANUTO and A. QUARTERONI, Variational methods in the theoretical analysis of spectral approximations, in Spectral Methods for Partial Differential Equations, 55-78, éd. by Voigt, R. G., Gottlieb, D. and Hussaini, M. Y., SIAM-CBMS, Philadelphia, 1984. Zbl0539.65080MR758262
  15. [15] Guo BEN-YU, Difference Methods for Partial Differential Equations, Science Press, Beijing, 1988. 
  16. [16] Ma HE-PING and Guo BEN-YU, The Chebyshev spectral method for Burgers-like equations, J. Comp. Math., 6, 1988, 48-53. Zbl0641.65084MR958603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.