About an inverse eigenvalue problem arising in vibration analysis
- Volume: 29, Issue: 4, page 421-434
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDai, Hua. "About an inverse eigenvalue problem arising in vibration analysis." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.4 (1995): 421-434. <http://eudml.org/doc/193779>.
@article{Dai1995,
author = {Dai, Hua},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {vibration analysis; inverse eigenvalue problem; best approximation; matrix of minimum distance; numerical algorithm},
language = {eng},
number = {4},
pages = {421-434},
publisher = {Dunod},
title = {About an inverse eigenvalue problem arising in vibration analysis},
url = {http://eudml.org/doc/193779},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Dai, Hua
TI - About an inverse eigenvalue problem arising in vibration analysis
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 4
SP - 421
EP - 434
LA - eng
KW - vibration analysis; inverse eigenvalue problem; best approximation; matrix of minimum distance; numerical algorithm
UR - http://eudml.org/doc/193779
ER -
References
top- [1] G. SRANG, 1980, Linear algebra and its applications, Academic Press, New York. Zbl0463.15001MR575349
- [2] K. J. BATHE and E. L. WlLSON, 1976, Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, New Jersey. Zbl0387.65069
- [3] D. H. F. CHU, 1983, Modal testing and modal refinement, American Society of Mechanical Engineers, New York.
- [4] A. BERMAN and W. G. FLANNELY, 1971, Theory of incomplete models of dynamic structures, AIAA J., 9 pp. 1491-1487.
- [5] M. BARUCH and I. Y. BAR-ITZHACK, 1978, Optimal weighted orthogonalization of measued modes, AIAA J., 16, pp. 346-351.
- [6] M. BARUCH, 1978, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J., 16, pp. 8-10. Zbl0395.73056
- [7] F. S. WEI, 1980, Stiffness matrix correction from incomplete test data, AIAA J., 18, pp.1274-1275. Zbl0462.73074
- [8] M. BARUCH, 1982, Optimal correction of mass and stiffness matrices using measured modes, AIAA J., 20, pp. 1623-1626. Zbl0539.16014
- [9] A. BERMAN and E. J. NAGY, 1983, Improvement of a large analytical model using test data, AIAA J., 21, pp.1168-1173.
- [10] DAI HUA, 1988, Optimal correction of stiffness, flexibility and mass matrices using vibration tests, J. of Vibration Engineering, 1, pp.18-27. MR963565
- [11] DAI HUA, 1994, Stiffness matrix correction using test data, Acta Aeronautica et Astronautica Sinica, 15,pp. 1091-1094.
- [12] ZHANG LEI, 1987, A kind of inverse problem of matrices and its numerical solution, Mathematica Numerica Sinica, 9, pp. 431-437. Zbl0641.65037MR948584
- [13] ZHANG LEI, 1989, The solvability conditions for theinverse problem of symmetric nonnegative definite matrices, Mathematica Numerica Sinica, 11,pp. 337-343. Zbl0973.15008MR1347044
- [14] LIAO ANPING, 1990, A class of inverse problems of matrix equation AX = B and its numerical solution, Mathematica Numerica Sinica, 12, pp.108-112. Zbl0850.65075MR1056652
- [15] WANG JIASONG and CHANG XIAOWEN, 1992, The best approximation of symmetric positive semidefinite matrices with spectral constraints, Numer. Math, - A.J. of Chinese Universities, 14,pp. 78-86. Zbl0756.65058MR1178019
- [16] R. A. HORN and C. R. JOHNSON, 1985, Matrix analysis, Cambridge University Press, New York. Zbl0576.15001MR832183
- [17] J. H. WlLKlNSON, 1965, The algebraic eigenvalue problem, Clarendon Press, Oxford. Zbl0258.65037MR184422
- [18] J. P. AUBIN, 1979, Applied functional analysis, John Wiley, New York. Zbl0424.46001MR549483
- [19] N. J. HlGHAM, 1988, Computing a nearest symmetric positive semi-definite matrix, Linear Algebra Appl., 103, pp. 103-118. Zbl0649.65026
- [20] J. H. WlLKINSON and C. REINSCH, 1971, Handbook for automatic computations, vol. II, Linear Algebra, Springer-Verlag, New York. MR461856
- [21] F. CHATELIN, 1993, Eigenvalues of matrices, Wiley, Chichester. Zbl0783.65031MR1232655
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.