About an inverse eigenvalue problem arising in vibration analysis

Hua Dai

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 4, page 421-434
  • ISSN: 0764-583X

How to cite

top

Dai, Hua. "About an inverse eigenvalue problem arising in vibration analysis." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.4 (1995): 421-434. <http://eudml.org/doc/193779>.

@article{Dai1995,
author = {Dai, Hua},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {vibration analysis; inverse eigenvalue problem; best approximation; matrix of minimum distance; numerical algorithm},
language = {eng},
number = {4},
pages = {421-434},
publisher = {Dunod},
title = {About an inverse eigenvalue problem arising in vibration analysis},
url = {http://eudml.org/doc/193779},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Dai, Hua
TI - About an inverse eigenvalue problem arising in vibration analysis
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 4
SP - 421
EP - 434
LA - eng
KW - vibration analysis; inverse eigenvalue problem; best approximation; matrix of minimum distance; numerical algorithm
UR - http://eudml.org/doc/193779
ER -

References

top
  1. [1] G. SRANG, 1980, Linear algebra and its applications, Academic Press, New York. Zbl0463.15001MR575349
  2. [2] K. J. BATHE and E. L. WlLSON, 1976, Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, New Jersey. Zbl0387.65069
  3. [3] D. H. F. CHU, 1983, Modal testing and modal refinement, American Society of Mechanical Engineers, New York. 
  4. [4] A. BERMAN and W. G. FLANNELY, 1971, Theory of incomplete models of dynamic structures, AIAA J., 9 pp. 1491-1487. 
  5. [5] M. BARUCH and I. Y. BAR-ITZHACK, 1978, Optimal weighted orthogonalization of measued modes, AIAA J., 16, pp. 346-351. 
  6. [6] M. BARUCH, 1978, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J., 16, pp. 8-10. Zbl0395.73056
  7. [7] F. S. WEI, 1980, Stiffness matrix correction from incomplete test data, AIAA J., 18, pp.1274-1275. Zbl0462.73074
  8. [8] M. BARUCH, 1982, Optimal correction of mass and stiffness matrices using measured modes, AIAA J., 20, pp. 1623-1626. Zbl0539.16014
  9. [9] A. BERMAN and E. J. NAGY, 1983, Improvement of a large analytical model using test data, AIAA J., 21, pp.1168-1173. 
  10. [10] DAI HUA, 1988, Optimal correction of stiffness, flexibility and mass matrices using vibration tests, J. of Vibration Engineering, 1, pp.18-27. MR963565
  11. [11] DAI HUA, 1994, Stiffness matrix correction using test data, Acta Aeronautica et Astronautica Sinica, 15,pp. 1091-1094. 
  12. [12] ZHANG LEI, 1987, A kind of inverse problem of matrices and its numerical solution, Mathematica Numerica Sinica, 9, pp. 431-437. Zbl0641.65037MR948584
  13. [13] ZHANG LEI, 1989, The solvability conditions for theinverse problem of symmetric nonnegative definite matrices, Mathematica Numerica Sinica, 11,pp. 337-343. Zbl0973.15008MR1347044
  14. [14] LIAO ANPING, 1990, A class of inverse problems of matrix equation AX = B and its numerical solution, Mathematica Numerica Sinica, 12, pp.108-112. Zbl0850.65075MR1056652
  15. [15] WANG JIASONG and CHANG XIAOWEN, 1992, The best approximation of symmetric positive semidefinite matrices with spectral constraints, Numer. Math, - A.J. of Chinese Universities, 14,pp. 78-86. Zbl0756.65058MR1178019
  16. [16] R. A. HORN and C. R. JOHNSON, 1985, Matrix analysis, Cambridge University Press, New York. Zbl0576.15001MR832183
  17. [17] J. H. WlLKlNSON, 1965, The algebraic eigenvalue problem, Clarendon Press, Oxford. Zbl0258.65037MR184422
  18. [18] J. P. AUBIN, 1979, Applied functional analysis, John Wiley, New York. Zbl0424.46001MR549483
  19. [19] N. J. HlGHAM, 1988, Computing a nearest symmetric positive semi-definite matrix, Linear Algebra Appl., 103, pp. 103-118. Zbl0649.65026
  20. [20] J. H. WlLKINSON and C. REINSCH, 1971, Handbook for automatic computations, vol. II, Linear Algebra, Springer-Verlag, New York. MR461856
  21. [21] F. CHATELIN, 1993, Eigenvalues of matrices, Wiley, Chichester. Zbl0783.65031MR1232655

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.