Existence for a stationary model of binary alloy solidification
Ph. Blanc; L. Gasser; J. Rappaz
- Volume: 29, Issue: 6, page 687-699
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBlanc, Ph., Gasser, L., and Rappaz, J.. "Existence for a stationary model of binary alloy solidification." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.6 (1995): 687-699. <http://eudml.org/doc/193788>.
@article{Blanc1995,
author = {Blanc, Ph., Gasser, L., Rappaz, J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence; stationary model of alloy solidification; heat equation; solute equation; Navier-Stokes equations; Carman-Kozeny penalization; mushy zone},
language = {eng},
number = {6},
pages = {687-699},
publisher = {Dunod},
title = {Existence for a stationary model of binary alloy solidification},
url = {http://eudml.org/doc/193788},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Blanc, Ph.
AU - Gasser, L.
AU - Rappaz, J.
TI - Existence for a stationary model of binary alloy solidification
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 6
SP - 687
EP - 699
LA - eng
KW - existence; stationary model of alloy solidification; heat equation; solute equation; Navier-Stokes equations; Carman-Kozeny penalization; mushy zone
UR - http://eudml.org/doc/193788
ER -
References
top- [1] N. AHMAD, 1995, Numerical Simulation of Transport Processes in Multicomponent Systems Related to Solidification Problems, Thesis EPFL.
- [2] G. AMIEZ, P.-A. GREMAUD, M. PICASSO, 1990, On a Penalty Method for the Stockes Problem in Regions With Moving Boundaries, Report DMA-EPFL N. 14.90.
- [3] Ph. BLANC, L. GASSER, 1993, Existence of a Stationary Solution of a Binary Alloy Problem, Report DMA-EPFL N. 09.93. Zbl0837.35119
- [4] J.R. CANNON, E. DIBENEDETTO, G. H. NIGHTLY, 1980, The Steady State Stefan Problem with Convection, Archive for Rational Mechanics and Analysis, 73, pp. 79-97. Zbl0436.76056MR555585
- [5] J. R. CANNON, E. DIBENEDETTO, G. H. KNIGHTLY, 1983, The Bidimensional Stefan Problem with Convection : the Time Dependent Case, Comm. in Partial Dijferential Equations, 14,pp. 1549-1604. Zbl0547.35117MR728873
- [6] R. DAUTRAY, J.-L. LIONS, 1987, Analyse mathématique et calcul numérique pour les sciences et les techniques, tome 2, Masson. Zbl0749.35005MR902801
- [7] D. GlLBARG, N. S. TRUDINGER, 1977, Elliptic Partial Differential Equations of Second Order, Springer. Zbl0361.35003MR473443
- [8] O. A. LADYZHENSKAYA, N. N. URAL'TSEVA, 1968, Linear and Quasilinear Elliptic Equations, Academic Press. Zbl0164.13002MR244627
- [9] R. TEMAM, 1984, Navier-Stokes Equations, North-Holland. Zbl0568.35002MR769654
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.