A regularity result for a linear membrane shell problem
- Volume: 30, Issue: 4, page 467-488
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGenevey, K.. "A regularity result for a linear membrane shell problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.4 (1996): 467-488. <http://eudml.org/doc/193812>.
@article{Genevey1996,
author = {Genevey, K.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {uniformly elliptic middle surface; linearly elastic shell; Agmon-Douglis-Nirenberg theory},
language = {eng},
number = {4},
pages = {467-488},
publisher = {Dunod},
title = {A regularity result for a linear membrane shell problem},
url = {http://eudml.org/doc/193812},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Genevey, K.
TI - A regularity result for a linear membrane shell problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 4
SP - 467
EP - 488
LA - eng
KW - uniformly elliptic middle surface; linearly elastic shell; Agmon-Douglis-Nirenberg theory
UR - http://eudml.org/doc/193812
ER -
References
top- S. AGMON, A. DOUGLIS, L. NIRENBERG, 1964, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math., 17, pp. 35-92. Zbl0123.28706MR162050
- M. BERNADOU, P. G. CIARLET, 1976, Sur l'ellipticité du modèle de W. T. Koiter, in Computing Methods in Applied Sciences and Engineering (R. Glowinski & J. L. Lions, editors), pp. 89-136, Lecture Notes in Economics and Mathematical Systems, Vol. 134, Springer-Verlag. Heidelberg. Zbl0356.73066MR478954
- M. BERNADOU, P. G. CIARLET, B. MIARA, 1994, Existence theorems for two dimensional linear shell theories, J. Elasticity, 34, pp. 111-138. Zbl0808.73045MR1288854
- P. G. CIARLET, 1988, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity,North Holland, Amsterdam. Zbl0648.73014MR936420
- P. G. ClARLET, 1996, Mathematical Elasticity, Vol. II: Plates and Shells, North Holland, Amsterdam. Zbl0888.73001
- P. G. CIARLET, V. LODS, 1996, On the ellipticity of linear membrane shell equations,J. Math. Pures Appl., 75, pp. 107-124. Zbl0870.73037MR1380671
- P. G. CIARLET, V. LODS, 1994a, Analyse asymptotique des coques linéairement élastiques. I. Coques « membranaires », C. R. Acad. Sci. Paris, 318, Sérié I, pp. 863-868. Zbl0823.73041MR1273920
- P. G. CIARLET, V. LODS, 1994b, Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de W. T. Koiter, C. R. Acad. Sci. Paris, 319, Série I, pp. 299-304. Zbl0837.73040MR1288422
- P. G. ClARLET, V. LODS, B. MlARA, 1994, Analyse asymptotique des coques linéairement élastiques. II Coques « en flexion », C. R. Acad. Sci. Paris, 319, Série I, pp. 95-100. Zbl0819.73043MR1285906
- P. G. CIARLET, B. MIARA, 1992, On the ellipticity of linear shell models, Z Angew. Math. Phys., 43, pp. 243-253. Zbl0765.73046MR1162726
- P. G. CIARLET, E. SANCHEZ-PALENCIA, 1996, An existence and uniqueness theorem for the two-dimensional linear membrane shell equations, J. Math. Pures Appl., 75, pp. 51-67. Zbl0856.73038MR1373545
- P. DESTUYNDER, 1980, Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Doctoral Dissertation, Université Pierre et Marie Curie.
- P. DESTUYNDER, 1985, A classification of thin shell theories, Acta Applicandae Mathematicae, 4, pp. 15-63. Zbl0531.73044MR791261
- G. GEYMONAT, 1965, Sui problemi ai limiti per i sistemi lineari ellitici, Ann. Mat. Pura Appl., 69, pp. 207-284. Zbl0152.11102MR196262
- W. T. KOITER, 1970, On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch., B73, pp. 169-195. Zbl0213.27002
- J. L. LIONS, E. MAGENES, 1968, Problèmes aux Limites Non Homogènes et Applications, Vol. I, Dunod, Paris. Zbl0165.10801
- B. MIARA, 1994, Analyse asymptotique des coques membranaires non linéairement élastiques, C. R. Acad. Sci. Paris, 318, Série I, pp. 689-694. Zbl0799.73049MR1272328
- NECAS J., 1967, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris. MR227584
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.