A regularity result for a linear membrane shell problem

K. Genevey

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 4, page 467-488
  • ISSN: 0764-583X

How to cite

top

Genevey, K.. "A regularity result for a linear membrane shell problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.4 (1996): 467-488. <http://eudml.org/doc/193812>.

@article{Genevey1996,
author = {Genevey, K.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {uniformly elliptic middle surface; linearly elastic shell; Agmon-Douglis-Nirenberg theory},
language = {eng},
number = {4},
pages = {467-488},
publisher = {Dunod},
title = {A regularity result for a linear membrane shell problem},
url = {http://eudml.org/doc/193812},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Genevey, K.
TI - A regularity result for a linear membrane shell problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 4
SP - 467
EP - 488
LA - eng
KW - uniformly elliptic middle surface; linearly elastic shell; Agmon-Douglis-Nirenberg theory
UR - http://eudml.org/doc/193812
ER -

References

top
  1. S. AGMON, A. DOUGLIS, L. NIRENBERG, 1964, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math., 17, pp. 35-92. Zbl0123.28706MR162050
  2. M. BERNADOU, P. G. CIARLET, 1976, Sur l'ellipticité du modèle de W. T. Koiter, in Computing Methods in Applied Sciences and Engineering (R. Glowinski & J. L. Lions, editors), pp. 89-136, Lecture Notes in Economics and Mathematical Systems, Vol. 134, Springer-Verlag. Heidelberg. Zbl0356.73066MR478954
  3. M. BERNADOU, P. G. CIARLET, B. MIARA, 1994, Existence theorems for two dimensional linear shell theories, J. Elasticity, 34, pp. 111-138. Zbl0808.73045MR1288854
  4. P. G. CIARLET, 1988, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity,North Holland, Amsterdam. Zbl0648.73014MR936420
  5. P. G. ClARLET, 1996, Mathematical Elasticity, Vol. II: Plates and Shells, North Holland, Amsterdam. Zbl0888.73001
  6. P. G. CIARLET, V. LODS, 1996, On the ellipticity of linear membrane shell equations,J. Math. Pures Appl., 75, pp. 107-124. Zbl0870.73037MR1380671
  7. P. G. CIARLET, V. LODS, 1994a, Analyse asymptotique des coques linéairement élastiques. I. Coques « membranaires », C. R. Acad. Sci. Paris, 318, Sérié I, pp. 863-868. Zbl0823.73041MR1273920
  8. P. G. CIARLET, V. LODS, 1994b, Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de W. T. Koiter, C. R. Acad. Sci. Paris, 319, Série I, pp. 299-304. Zbl0837.73040MR1288422
  9. P. G. ClARLET, V. LODS, B. MlARA, 1994, Analyse asymptotique des coques linéairement élastiques. II Coques « en flexion », C. R. Acad. Sci. Paris, 319, Série I, pp. 95-100. Zbl0819.73043MR1285906
  10. P. G. CIARLET, B. MIARA, 1992, On the ellipticity of linear shell models, Z Angew. Math. Phys., 43, pp. 243-253. Zbl0765.73046MR1162726
  11. P. G. CIARLET, E. SANCHEZ-PALENCIA, 1996, An existence and uniqueness theorem for the two-dimensional linear membrane shell equations, J. Math. Pures Appl., 75, pp. 51-67. Zbl0856.73038MR1373545
  12. P. DESTUYNDER, 1980, Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Doctoral Dissertation, Université Pierre et Marie Curie. 
  13. P. DESTUYNDER, 1985, A classification of thin shell theories, Acta Applicandae Mathematicae, 4, pp. 15-63. Zbl0531.73044MR791261
  14. G. GEYMONAT, 1965, Sui problemi ai limiti per i sistemi lineari ellitici, Ann. Mat. Pura Appl., 69, pp. 207-284. Zbl0152.11102MR196262
  15. W. T. KOITER, 1970, On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch., B73, pp. 169-195. Zbl0213.27002
  16. J. L. LIONS, E. MAGENES, 1968, Problèmes aux Limites Non Homogènes et Applications, Vol. I, Dunod, Paris. Zbl0165.10801
  17. B. MIARA, 1994, Analyse asymptotique des coques membranaires non linéairement élastiques, C. R. Acad. Sci. Paris, 318, Série I, pp. 689-694. Zbl0799.73049MR1272328
  18. NECAS J., 1967, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris. MR227584

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.