A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains
Roland Glowinski; Andreas Rieder; Raymond O. Wells; Xiaodong Zhou
- Volume: 30, Issue: 6, page 711-729
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGlowinski, Roland, et al. "A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 711-729. <http://eudml.org/doc/193820>.
@article{Glowinski1996,
author = {Glowinski, Roland, Rieder, Andreas, Wells, Raymond O., Xiaodong Zhou},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical examples; wavelet-based multigrid method; preconditioner; conjugate gradient method; wavelet-Galerkin discretization; penalty/fictious domain formulation},
language = {eng},
number = {6},
pages = {711-729},
publisher = {Dunod},
title = {A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains},
url = {http://eudml.org/doc/193820},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Glowinski, Roland
AU - Rieder, Andreas
AU - Wells, Raymond O.
AU - Xiaodong Zhou
TI - A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 711
EP - 729
LA - eng
KW - numerical examples; wavelet-based multigrid method; preconditioner; conjugate gradient method; wavelet-Galerkin discretization; penalty/fictious domain formulation
UR - http://eudml.org/doc/193820
ER -
References
top- [1] G. BEYLKIN, 1992, On the representation of operators in bases of compactly supported wavelets, SIAM J. Numerical Analysis, 6, pp. 1716-1740. Zbl0766.65007MR1191143
- [2] Ph. G. CIARLET, 1987, The finite element methods for elliptic problems, North-Holland. Zbl0999.65129MR520174
- [3] I. DAUBECHIES, 1988, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, pp. 906-966. Zbl0644.42026MR951745
- [4] P. J. DAVIS, 1979, Circulant Matrices, John Wiley & Sons, New York. Zbl0418.15017MR543191
- [5] T. EIROLA, 1992, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal. 23(4), pp. 1015-1030. Zbl0761.42014MR1166573
- [6] R. GLOWINSKI, J. PERIAUX, M. RAVACHOL, T. W. PAN, R. O. Jr. WELLS and X. ZHOU, 1993, Wavelet methods in computational fluid dynamics. In M. Y. Hussaini et al., editor, Algorithmic Trends in Computational Fluid Dynamics, New York, pp. 259-276, Springer-Verlag. MR1295640
- [7] R. GLOWINSKI, 1984, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer-Verlag, New York. Zbl0536.65054MR737005
- [8] W. HACKBUSCH, 1985, Multi Grid Methods and Applications, Springer Series in Computational Mathematics. Springer-Verlag, New York. Zbl0595.65106
- [9] W. HACKBUSCH, 1994, Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, Springer Vetlag, New York. Zbl0789.65017MR1247457
- [10] M. R. HESTENES and E. STIEFEL, 1952, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standads 49, pp. 409-436. Zbl0048.09901MR60307
- [11] A. LATTO, H. L. RESNIKOFF and E. TENENBAUM, 1992, The evaluation of connection coefficients of compactly supported wavelets. In Y. Maday, editor, Proceedtngs of the French-USA Workshop on Wavelets and Turbulence, June 1991, New York, Princeton University, Springer-Verlag.
- [12] S. MALLAT, 1989, Multiresolution approximation and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc., 315, pp. 69-87. Zbl0686.42018MR1008470
- [13] J. WEISS, 1992, Wavelets and the study of two dimensional turbulence. In Y. Maday, editor, Proceedings of the French USA Workshop on Wavelets and Turbulence June 1991, New York, Princeton University, Springer Verlag.
- [14] R. O. WELLS and XIAODONG ZHOU, 1992, Representing the geometry or domains by wavelets with applications to partial differential equations. In J. Warren, editor, Curves and Surfaces in Computer Graphics III, volume 1834, pp. 23-33. SPIE.
- [15] R. O. WELLS and XIAODONG ZHOU, 1995, Wavelet solutions for the Dirichlet problem, Numer. Math., 70, pp. 379-396. Zbl0824.65108MR1330870
- [16] R. O. WELLS and XIAODONG ZHOU, 1994, Wavelet interpolation and approximate solutions of elliptic partial differential equations. In R. Wilson and E. A. Tanner, editors, Noncompact Lie Croups, Kluwer, to appear Proceedings of NATO Advanced Research Workshop. Zbl0811.65096MR1306537
- [17] P. WESSELING, 1991, An Introduction to MultiGrid Methods, Pure & Applied Mathematics, A Wiley Interscience Series of Text, Monographs & Tracts John Wiley & Sons, New York. Zbl0760.65092MR1156079
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.