A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains

Roland Glowinski; Andreas Rieder; Raymond O. Wells; Xiaodong Zhou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 6, page 711-729
  • ISSN: 0764-583X

How to cite

top

Glowinski, Roland, et al. "A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 711-729. <http://eudml.org/doc/193820>.

@article{Glowinski1996,
author = {Glowinski, Roland, Rieder, Andreas, Wells, Raymond O., Xiaodong Zhou},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical examples; wavelet-based multigrid method; preconditioner; conjugate gradient method; wavelet-Galerkin discretization; penalty/fictious domain formulation},
language = {eng},
number = {6},
pages = {711-729},
publisher = {Dunod},
title = {A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains},
url = {http://eudml.org/doc/193820},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Glowinski, Roland
AU - Rieder, Andreas
AU - Wells, Raymond O.
AU - Xiaodong Zhou
TI - A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 711
EP - 729
LA - eng
KW - numerical examples; wavelet-based multigrid method; preconditioner; conjugate gradient method; wavelet-Galerkin discretization; penalty/fictious domain formulation
UR - http://eudml.org/doc/193820
ER -

References

top
  1. [1] G. BEYLKIN, 1992, On the representation of operators in bases of compactly supported wavelets, SIAM J. Numerical Analysis, 6, pp. 1716-1740. Zbl0766.65007MR1191143
  2. [2] Ph. G. CIARLET, 1987, The finite element methods for elliptic problems, North-Holland. Zbl0999.65129MR520174
  3. [3] I. DAUBECHIES, 1988, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, pp. 906-966. Zbl0644.42026MR951745
  4. [4] P. J. DAVIS, 1979, Circulant Matrices, John Wiley & Sons, New York. Zbl0418.15017MR543191
  5. [5] T. EIROLA, 1992, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal. 23(4), pp. 1015-1030. Zbl0761.42014MR1166573
  6. [6] R. GLOWINSKI, J. PERIAUX, M. RAVACHOL, T. W. PAN, R. O. Jr. WELLS and X. ZHOU, 1993, Wavelet methods in computational fluid dynamics. In M. Y. Hussaini et al., editor, Algorithmic Trends in Computational Fluid Dynamics, New York, pp. 259-276, Springer-Verlag. MR1295640
  7. [7] R. GLOWINSKI, 1984, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer-Verlag, New York. Zbl0536.65054MR737005
  8. [8] W. HACKBUSCH, 1985, Multi Grid Methods and Applications, Springer Series in Computational Mathematics. Springer-Verlag, New York. Zbl0595.65106
  9. [9] W. HACKBUSCH, 1994, Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, Springer Vetlag, New York. Zbl0789.65017MR1247457
  10. [10] M. R. HESTENES and E. STIEFEL, 1952, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standads 49, pp. 409-436. Zbl0048.09901MR60307
  11. [11] A. LATTO, H. L. RESNIKOFF and E. TENENBAUM, 1992, The evaluation of connection coefficients of compactly supported wavelets. In Y. Maday, editor, Proceedtngs of the French-USA Workshop on Wavelets and Turbulence, June 1991, New York, Princeton University, Springer-Verlag. 
  12. [12] S. MALLAT, 1989, Multiresolution approximation and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc., 315, pp. 69-87. Zbl0686.42018MR1008470
  13. [13] J. WEISS, 1992, Wavelets and the study of two dimensional turbulence. In Y. Maday, editor, Proceedings of the French USA Workshop on Wavelets and Turbulence June 1991, New York, Princeton University, Springer Verlag. 
  14. [14] R. O. WELLS and XIAODONG ZHOU, 1992, Representing the geometry or domains by wavelets with applications to partial differential equations. In J. Warren, editor, Curves and Surfaces in Computer Graphics III, volume 1834, pp. 23-33. SPIE. 
  15. [15] R. O. WELLS and XIAODONG ZHOU, 1995, Wavelet solutions for the Dirichlet problem, Numer. Math., 70, pp. 379-396. Zbl0824.65108MR1330870
  16. [16] R. O. WELLS and XIAODONG ZHOU, 1994, Wavelet interpolation and approximate solutions of elliptic partial differential equations. In R. Wilson and E. A. Tanner, editors, Noncompact Lie Croups, Kluwer, to appear Proceedings of NATO Advanced Research Workshop. Zbl0811.65096MR1306537
  17. [17] P. WESSELING, 1991, An Introduction to MultiGrid Methods, Pure & Applied Mathematics, A Wiley Interscience Series of Text, Monographs & Tracts John Wiley & Sons, New York. Zbl0760.65092MR1156079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.