Stability of saddle point problems with penalty

Dietrich Braess

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 6, page 731-742
  • ISSN: 0764-583X

How to cite

top

Braess, Dietrich. "Stability of saddle point problems with penalty." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 731-742. <http://eudml.org/doc/193821>.

@article{Braess1996,
author = {Braess, Dietrich},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {saddle point problems with penalty terms; singular perturbations; Hilbert spaces; stability; Mindlin-Reissner plates},
language = {eng},
number = {6},
pages = {731-742},
publisher = {Dunod},
title = {Stability of saddle point problems with penalty},
url = {http://eudml.org/doc/193821},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Braess, Dietrich
TI - Stability of saddle point problems with penalty
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 731
EP - 742
LA - eng
KW - saddle point problems with penalty terms; singular perturbations; Hilbert spaces; stability; Mindlin-Reissner plates
UR - http://eudml.org/doc/193821
ER -

References

top
  1. [1] D. N. ARNOLD, 1981, Discretization by finite elements of a model parameter dependent problem, Numer. Math., 37, pp. 405-421. Zbl0446.73066MR627113
  2. [2] D. N. ARNOLD and F. BREZZI, 1993, Some new elements for the Reissner-Mindlin plate model. In « Boundary Value Problems for Partial Differential Equations and Applications » (J.-L. Lions and C. Baiocchi, eds ), pp. 287-292, Masson. Zbl0817.73058MR1260452
  3. [3] D. N. ARNOLD and F. BREZZI, Locking free finite elements for shells, Math. Comp. (to appear). Zbl0854.65095MR1370847
  4. [4] D. N. ARNOLD and R. S. FALK, 1989, A uniformly accurate finite element method for the Mindlin-Reissner plate, SIAM J. Numer. Anal., 26, pp. 1276-1290. Zbl0696.73040MR1025088
  5. [5] D. N. ARNOLD and R. S. FALK, 1990, The boundary layer for the Reissner-Mindlin plate model, SIAM J. Math. Anal. 21., pp 281-312. Zbl0698.73042MR1038893
  6. [6] D. BRAESS, 1992, Finite Elemente : Theorie, schnelle Löser und Anwendungen in der Elastizitatstheorie, Springer-Verlag, Berlin. Zbl0754.65084
  7. [7] D. BRAESS and C. BLOMER, 1990, A multigrid method for a parameter dependent problem in sohd mechanics, Numer. Math., 57, pp. 747-761. Zbl0665.65077MR1065522
  8. [8] F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangien multipliers. RAIRO. Anal. Numér. 8, R-2, pp. 129-151. Zbl0338.90047MR365287
  9. [9] F. BREZZI, K. J. BATHE and M. FORTIN, 1989, Mixed-interpolated elements for Reissner-Mindlin plates, Int J. Num. Meth. Eng., 28, pp. 1787-1801. Zbl0705.73238MR1008138
  10. [10] F. BREZZI and M. FORTIN, 1986, Numerical approximation ot Mindlin-Reisser plates. Math. Comp., 47, 151-158. Zbl0596.73058MR842127
  11. [11] F. BREZZI, M. FORTIN and R. STENBERG, 1991, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models and Methods in Appl. Sci., 1, pp. 125-151. Zbl0751.73053MR1115287
  12. [12] V. GIRAULT and P. A RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin. Zbl0585.65077MR851383
  13. [13] Z. HUANG, 1990, A multi-grid algorithm for mixed problems with penalty, Numer. Math., 57, pp. 227-247. Zbl0712.73106MR1057122
  14. [14] A. PEIRMSE, 1990, Private communication. 
  15. [15] P. PEISKER and D. BRAESS, 1992, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates, RAIRO. Anal. Numér., 26, pp. 557-574. Zbl0758.73050MR1177387

NotesEmbed ?

top

You must be logged in to post comments.