Stability of saddle point problems with penalty

Dietrich Braess

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 6, page 731-742
  • ISSN: 0764-583X

How to cite

top

Braess, Dietrich. "Stability of saddle point problems with penalty." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 731-742. <http://eudml.org/doc/193821>.

@article{Braess1996,
author = {Braess, Dietrich},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {saddle point problems with penalty terms; singular perturbations; Hilbert spaces; stability; Mindlin-Reissner plates},
language = {eng},
number = {6},
pages = {731-742},
publisher = {Dunod},
title = {Stability of saddle point problems with penalty},
url = {http://eudml.org/doc/193821},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Braess, Dietrich
TI - Stability of saddle point problems with penalty
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 731
EP - 742
LA - eng
KW - saddle point problems with penalty terms; singular perturbations; Hilbert spaces; stability; Mindlin-Reissner plates
UR - http://eudml.org/doc/193821
ER -

References

top
  1. [1] D. N. ARNOLD, 1981, Discretization by finite elements of a model parameter dependent problem, Numer. Math., 37, pp. 405-421. Zbl0446.73066MR627113
  2. [2] D. N. ARNOLD and F. BREZZI, 1993, Some new elements for the Reissner-Mindlin plate model. In « Boundary Value Problems for Partial Differential Equations and Applications » (J.-L. Lions and C. Baiocchi, eds ), pp. 287-292, Masson. Zbl0817.73058MR1260452
  3. [3] D. N. ARNOLD and F. BREZZI, Locking free finite elements for shells, Math. Comp. (to appear). Zbl0854.65095MR1370847
  4. [4] D. N. ARNOLD and R. S. FALK, 1989, A uniformly accurate finite element method for the Mindlin-Reissner plate, SIAM J. Numer. Anal., 26, pp. 1276-1290. Zbl0696.73040MR1025088
  5. [5] D. N. ARNOLD and R. S. FALK, 1990, The boundary layer for the Reissner-Mindlin plate model, SIAM J. Math. Anal. 21., pp 281-312. Zbl0698.73042MR1038893
  6. [6] D. BRAESS, 1992, Finite Elemente : Theorie, schnelle Löser und Anwendungen in der Elastizitatstheorie, Springer-Verlag, Berlin. Zbl0754.65084
  7. [7] D. BRAESS and C. BLOMER, 1990, A multigrid method for a parameter dependent problem in sohd mechanics, Numer. Math., 57, pp. 747-761. Zbl0665.65077MR1065522
  8. [8] F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangien multipliers. RAIRO. Anal. Numér. 8, R-2, pp. 129-151. Zbl0338.90047MR365287
  9. [9] F. BREZZI, K. J. BATHE and M. FORTIN, 1989, Mixed-interpolated elements for Reissner-Mindlin plates, Int J. Num. Meth. Eng., 28, pp. 1787-1801. Zbl0705.73238MR1008138
  10. [10] F. BREZZI and M. FORTIN, 1986, Numerical approximation ot Mindlin-Reisser plates. Math. Comp., 47, 151-158. Zbl0596.73058MR842127
  11. [11] F. BREZZI, M. FORTIN and R. STENBERG, 1991, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models and Methods in Appl. Sci., 1, pp. 125-151. Zbl0751.73053MR1115287
  12. [12] V. GIRAULT and P. A RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin. Zbl0585.65077MR851383
  13. [13] Z. HUANG, 1990, A multi-grid algorithm for mixed problems with penalty, Numer. Math., 57, pp. 227-247. Zbl0712.73106MR1057122
  14. [14] A. PEIRMSE, 1990, Private communication. 
  15. [15] P. PEISKER and D. BRAESS, 1992, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates, RAIRO. Anal. Numér., 26, pp. 557-574. Zbl0758.73050MR1177387

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.