Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids

Hervé Le Meur

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 2, page 185-211
  • ISSN: 0764-583X

How to cite

top

Le Meur, Hervé. "Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.2 (1997): 185-211. <http://eudml.org/doc/193835>.

@article{LeMeur1997,
author = {Le Meur, Hervé},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Poiseuille flow; Phan-Thien Tanner model; modified Phan-Thien Tanner model; Couette flow},
language = {eng},
number = {2},
pages = {185-211},
publisher = {Dunod},
title = {Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids},
url = {http://eudml.org/doc/193835},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Le Meur, Hervé
TI - Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 2
SP - 185
EP - 211
LA - eng
KW - Poiseuille flow; Phan-Thien Tanner model; modified Phan-Thien Tanner model; Couette flow
UR - http://eudml.org/doc/193835
ER -

References

top
  1. [1] C. GUILLOPÉ & J. C. SAUT, 1990, "Global existence and one-dimensional non linear stabihty of shearing motions of viscoelastic fluids of Oldroyd type", M2AN Vol 24, n° 3, 369-401. Zbl0701.76011MR1055305
  2. [2] R. W. KOLKKA, G. R. IERLEY, M. G. HANSEN & R. A. WORTHING, 1987, "On the stability of viscoelastic parallel shear flows", Technical Report, F.R.O.G. Michigan Technological University. 
  3. [3] C. GUILLOPÉ & J. C. SAUT, 1990, "Existence results for the flow of viscoelastic fluids with a differential constitutive law". Nonlinear Analysis Theory, Methods & Applications, Vol. 15, No 9, 849-869. Zbl0729.76006MR1077577
  4. [4] R. J. GORDON & SCHOWALTER, 1972, Trans. Soc. Rheol., 16, 79. Zbl0368.76006
  5. [5] L. A. DÀVALOS-OROZCO, 1992, "Capillary instability due to a shear stress on the free surface of a viscoelastic fluid layer", J. Non-Newtonian Fluid Mech., 45, 171-186. Zbl0761.76021
  6. [6] M. RENARDY & Y. RENARDY, 1986, "Linear stability of plane Couette flow of an Upper Convected Maxwell fluid", J. Non-Newtonian Fluid Mech., 22, 23-33. Zbl0608.76006
  7. [7] G. M. WILSON & B. KHOMAMI, 1992, "An experimental investigation of interfacial instabilities in multilayer flow of viscoelastic fluids. I. Incompatible polymer Systems", J. Non-Newtonian Fluid Mech., 45, 355-384. 
  8. [8] H. LE MEUR, 1994, Existence, unicité et stabilité d'écoulements de fluides viscoélastiques avec interface, PhD Thesis of University Paris-Sud Orsay. 
  9. [9] D. D. JOSEPH, Fluid dynamics of Visco Elastic liquids, Applied Mathematical Sciences 84 Springer Verlag. Zbl0698.76002MR1051193
  10. [10] D. D. JOSEPH, 1976, Stability of fluid motions, Vol. I, II Springer. Zbl0345.76023
  11. [11] N. PHAN-THIEN & R. I. TANNER, 1977, "A new constitutive equation derived from network theory", J. Non-Newtonian Fluid Mech, 2, 353-365. Zbl0361.76011
  12. [12] R. I. TANNER, Viscoélasticité non linéaire : Rhéologie et modélisation numérique, Ecoles CEA-EDF-INRIA, 27-30/01/ 1992. 
  13. [13] R. KEUNINGS & M. J. CROCHET, 1984, "Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction", J. Non Newtonian Fluid Mech., 14, 279 299. Zbl0531.76013
  14. [14] M. RENARDY, "On the linear stability of parallel shear flows of viscoelastic fluids of Jeffreys type". to appear. 
  15. [15] M. RENARDY, 1993, "On the type of certain C0 Semigroups", Comm. Part. Diff. Eq., 18 (7 & 8), 1299-1307. Zbl0801.47029MR1233196
  16. [16] P. HENRICI, 1974, Applied and Computational Complex Analysis, vol. I, John Wiley, New-York. Zbl0313.30001MR372162

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.