Interpolation in harmonic Hilbert spaces

Franz-J. Delvos

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 4, page 435-458
  • ISSN: 0764-583X

How to cite

top

Delvos, Franz-J.. "Interpolation in harmonic Hilbert spaces." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.4 (1997): 435-458. <http://eudml.org/doc/193844>.

@article{Delvos1997,
author = {Delvos, Franz-J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {harmonic Hilbert space; variational approach; infinite interpolation; sinc-functions; splines},
language = {eng},
number = {4},
pages = {435-458},
publisher = {Dunod},
title = {Interpolation in harmonic Hilbert spaces},
url = {http://eudml.org/doc/193844},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Delvos, Franz-J.
TI - Interpolation in harmonic Hilbert spaces
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 4
SP - 435
EP - 458
LA - eng
KW - harmonic Hilbert space; variational approach; infinite interpolation; sinc-functions; splines
UR - http://eudml.org/doc/193844
ER -

References

top
  1. I. BABUSKA, 1968, Über universal optimale Quadraturformeln. Teil 1, Apl. mat, 13, 304-338, Teil 2. Apl. mat, 13, 388-404. Zbl0247.65010MR244680
  2. K. CHANDRASEKHARAN, 1989, « Classical Fourier transforms ». Springer-Verlag, Berlin. Zbl0681.42001MR978387
  3. F.-J. DELVOS, 1990, Approximation by optimal periodic interpolation, Apl. mat, 35, 451-457. Zbl0743.41005MR1089925
  4. F.-J. DELVOS, 1991, Antiperiodic interpolation on uniform meshes. In « Progress in pproximation Theory » edited by P. Nevai and A. Pinkus, Academic Press, New York, 187-199. MR1114773
  5. B. EPSTEIN, D.D. GREENSTEIN and J. MIRANKER, 1958, An extremal problem with infinitely many interpolation conditions. Annales Acad. Sc. Fennicae, Series A, I., Math., 250/10, 1-8. Zbl0080.28801MR95959
  6. H. G. GARNIR, 1965, « Fonctions de variables réelles, Tome II » Gauthier-Villars, Paris. Zbl0143.06901MR204578
  7. Y. KATZNELSON, 1976, « An introduction to harmonic analysis ». Dover, New York. Zbl0352.43001MR422992
  8. F. LOCHER, 1981, Interpolation on uniform meshes by translates of one function and related attenuation factors. Math. Computation, 37, 403-416. Zbl0517.42004MR628704
  9. F. OBERHETTLNGER, 1973, « Fourier transforms of distributions and their inverses ». Academic Press, New York. Zbl0306.65002MR352887
  10. M. PRAGER, 1979, Universally optimal approximation of functionals. Apl. mat., 24, 406-420. Zbl0449.41003MR547044
  11. I. J. SCHOENBERG, 1969, Cardinal interpolation and spline functions J. Approx Theory, 2, 167-206. Zbl0202.34803MR257616
  12. R. M. YOUNG, 1980, « An introduction to nonharmomic Fourier series » Academic Press, New York. Zbl0493.42001MR591684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.