Modeling and optimization of non-symmetric plates

L. J. Alvarez-Vásquez; J. M. Viaño

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 6, page 733-763
  • ISSN: 0764-583X

How to cite

top

Alvarez-Vásquez, L. J., and Viaño, J. M.. "Modeling and optimization of non-symmetric plates." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.6 (1997): 733-763. <http://eudml.org/doc/193854>.

@article{Alvarez1997,
author = {Alvarez-Vásquez, L. J., Viaño, J. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {limit model; asymptotic method; three-dimensional elasticity; existence; uniqueness; shape optimization; penalty methods},
language = {eng},
number = {6},
pages = {733-763},
publisher = {Dunod},
title = {Modeling and optimization of non-symmetric plates},
url = {http://eudml.org/doc/193854},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Alvarez-Vásquez, L. J.
AU - Viaño, J. M.
TI - Modeling and optimization of non-symmetric plates
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 6
SP - 733
EP - 763
LA - eng
KW - limit model; asymptotic method; three-dimensional elasticity; existence; uniqueness; shape optimization; penalty methods
UR - http://eudml.org/doc/193854
ER -

References

top
  1. [1] R. ADAMS, 1975, Sobolev spaces, Academic Press, New York. Zbl0314.46030MR450957
  2. [2] L. J. ALVAREZ VAZQUEZ, P. QUINTELA ESTEVEZ, 1992, The effect of different scalings in the modelling of nonlinearly elastic plates with rapidly varying thickness, Comp. Meth. Appl. Mech. Eng., 96, 1-24. Zbl0759.73032MR1159590
  3. [3] V. BARBU, T. PRECUPANU, 1978, Convexity and optimization in Banach spaces, Sijthoff and Noordhoff, Bucharest, 1978. Zbl0379.49010MR860772
  4. [4] D. BLANCHARD, 1981, Justification de modèles de plaques correspondant à différentes conditions aux limites, Thesis, Univ. Pierre et Marie Curie, Paris. 
  5. [5] D. BLANCHARD, P. G. CIARLET, 1983, A remark on the von Karman Equations, Comp. Meth. Appl. Mech. Eng., 37, 79-92. Zbl0486.73051MR699016
  6. [6] D. BLANCHARD, G. A. FRANCFORT, 1987, Asymptotic thermoelastic behavior of flat plates, Quart. Appl. Math., 45, 645-667. Zbl0629.73007MR917015
  7. [7] H. BREZIS, 1973, Opérateurs maximaux monotones et semigroupes de contractions dans les espces de Hilbert, North-Holland. Zbl0252.47055
  8. [8] D. CAILLERE, 1980, The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. Appl. Sci., 2, 251-270. Zbl0446.73014MR581205
  9. [9] E. CASAS, 1982, Análisis numerico de algunos problemas de optimización estructural, Thesis, Universidad de Santiago de Compostela. 
  10. [10] E. CASAS, 1990, Optimality conditions and numerical approximations for some optimal design problems, Control Cibernet, 19, 73-91. Zbl0731.49010MR1118675
  11. [11] J. CEA, 1971, Optimisation: Théorie et Algorithmes, Dunod, Paris. Zbl0211.17402MR298892
  12. [12] P. G. ClARLET, 1980, A justification of the von Karman equations, Arch. Rat. Mech. Anal., 73, 349-389. Zbl0443.73034MR569597
  13. [13] P.G. CIARLET, 1988, Mathematical Elasticity, Vol. 1, North-Holland, Amsterdam. Zbl0648.73014MR936420
  14. [14] P. G. CIARLET, 1990, Plates and junctions in elastic multi-structures, Masson, Paris. Zbl0706.73046MR1071376
  15. [15] P. G. CIARLET, P. DESTUYNDER, 1979, A justification of the two dimensional linear plate model, J. Mécanique, 18, 315-344. Zbl0415.73072MR533827
  16. [16] P. G. CIARLET, P. DESTUYNDER, 1979, A justification of a nonlinear model in plate theory, Comp. Meth. Appl. Mech. Eng., 17/18, 222-258. Zbl0405.73050MR533827
  17. [17] P. G. ClARLET, S. KESAVAN, 1981, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory, Comp. Meth. Appl. Mech. Eng., 26, 145-172. Zbl0489.73057MR626720
  18. [18] P. G. ClARLET, H. LE DRET, 1989, Justification of the boundary conditions of a clamped plate by an asyptotic analysis, Asymptotic Analysis, 2, 257-277. Zbl0699.73011MR1030351
  19. [19] P.G CIARLET, B. MIARA, 1992, Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math., 45,327-360. Zbl0769.73050MR1151270
  20. [20] P. G. CIARLET, P. PAUMIER, 1985, Une justification des équations de Maguerre von Karman pour les coques peu profondes, C. R. Acad. Sc. Paris, 301, 857-860. Zbl0594.73066MR822849
  21. [21] P. G. CIARLET, P. RABIER, 1980, Les équations de von Karman, Lecture Notes in Mathematics, vol. 826 Springer Verlag, Berlin. Zbl0433.73019MR595326
  22. [22] A. CIMETIÈRE, G. GEYMONAT, H. LE DRET, A. RAOULT, Z. TUTEK, 1988, Asymptotic theory and analysis for displacements and stress distribution in non linear elstic slender rods, J. Elasticity, 19, 111-161. Zbl0653.73010MR937626
  23. [23] D. CIORANESCU, J. SAINT JEAN PAULIN, 1988, Reinforced and honey comb structures, J. Math. Pures Appl., 65, 403-422. Zbl0656.35031MR881689
  24. [24] J. L. DAVET, 1986, Justification de modèles de plaques non lineaires pour des lois de comportement générales, Mod. Math. Anal. Num., 20, 225-249. Zbl0634.73048MR852680
  25. [25] P. DESTUYNDER, 1980, Sur une justification des modèles de plaques et coques par les méthodes asymptotiques, Thesis, Univ. Pierre et Marie Curie. 
  26. [26] P. DESTUYNDER, 1981, Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité, RAIRO Anal. Num., 15, 331-369. Zbl0479.73042MR642497
  27. [27] P. DESTUYNDER, 1985, A classification of thin shell theories, Acta. Appl. Math., 4, 15-63. Zbl0531.73044MR791261
  28. [28] P. DESTUYNDER, 1986, Une théorie asymptotique des plaques minces en élasticité linéaire, Masson, Paris. Zbl0627.73064MR830660
  29. [29] G. DUVAUT, J.L. LIONS, 1972, Les inéquations en Mécanique et en Physique, Dunod, Paris. Zbl0298.73001MR464857
  30. [30] I.M.N. FIGUEIREDO, 1989, Modèles de coques élastiques non linéaires : méthode asymptotique et existence de solution, Thesis, Univ. Pierre et Marie Curie, Paris. 
  31. [31] K. O. FRIEDRICHS, R. F. DRESSLER, 1961, A boundary-layer theory for elastic plates, Comm. Pure. Appl. Math., 14, 1-33. Zbl0096.40001MR122117
  32. [32] A. L. GOLDENVEIZER, 1962, Derivation of an approximated theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Plikl. Mat. Mech., 26, 668-686. Zbl0118.41603MR170523
  33. [33] J. HASLINGER, P. NEITTANMAKI, 1988, Finite element approximation for optimal shape design, John Wiley, Chichester. Zbl0713.73062MR982710
  34. [34] E. J. HAUG, J.S. ARORA, 1979, Applied Optimal Design Mechanical and Strutural Systems, John Wiley, New York. 
  35. [35] I. HLAVACEK, I. BOCK, J. LOVISEK, 1984, Optimal control of a varitional inequality with applications to structural analysis. Optimal design of a beam with unilateral supports, Appl. Math. Optim., 11, 111-143. Zbl0553.73082MR743922
  36. [36] I. HLAVACEK, I. BOCK, J. LOVISEK, 1984, Optimal control of a variational unequlity with applications to structural analysis II. Local optimization of the stress in a beam III. Optimal design of an elastic plate, Appl. Math. Optim., 13, 117-136. Zbl0582.73081MR794174
  37. [37] R.V. KOHN, M. VOGELIUS, 1984, A now model for thin plates with rapidly varying thickness, Int. J. Solids Structures, 20, 333-350. Zbl0532.73055MR739921
  38. [38] R. V. KOHN, M VOGELIUS, 1985, A new model for thin plates with rapidly varying thickness. II : A convergence proof, Quart. Appl. Math., 43, 1-22. Zbl0565.73046MR782253
  39. [39] R. V. KOHN, M. VOGELIUS, 1986, A new model for thin plates with rapidly varying thickness. III: Comparison of different scalings, Quart. Appl. Math., 44, 35-48. Zbl0605.73048MR840441
  40. [40] P. QUINTELA ESTEVEZ, 1989, A new model for nonlinear elastic plates with rapidly varying thickness, Applicable Analysis, 32, 107-127. Zbl0683.73027MR1017526
  41. [41] P. QUINTELA ESTEVEZ, 1990, A new model for nonlinear elastic plates with rapidly varying thickness II: The effect of the behavior of the forces when the thickness approaches zero, Applicable Analysis, 39, 151-164. Zbl0687.73061MR1095630
  42. [42] A. RAOULT, 1980, Contribution à l'étude des modèles d'évolution de plaques et à l'approximation d'équations d'évolution linéaires de second ordre par des méthodes multipas, Thesis, Univ. Pierre et Marie Curie, Paris. 
  43. [43] A. RAOULT, 1985, Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation, Ann. Mat. Pura Appl., 139, 361-400. Zbl0596.73033MR798182
  44. [44] A. RAOULT, 1992, Asymptotic modeling of the elastodynamics of a multistructure, Asymptotic Analysis, 6, 73-108. Zbl0777.73033MR1188078
  45. [45] L. TRABUCHO, J.M. VIANO, 1996, Mathematical modelling of rods, in: (P. G. Ciarlet, J. L. Lions, eds.) Handbook of numerical analysis, Vol. IV, North-Holland, Amsterdam. Zbl0873.73041MR1422507
  46. [46] J.M. VIAÑO, 1983, Contribution à l'étude des modèles bidimensionnelles en thermoélasticité de plaques d'épaisseur non constante, Thesis, Univ. Pierre et Marie Curie, Paris. 
  47. [47] K. YOSIDA, 1975, Functional Analysis, Springer Verlag, Berlin. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.