Modeling and optimization of non-symmetric plates
L. J. Alvarez-Vásquez; J. M. Viaño
- Volume: 31, Issue: 6, page 733-763
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAlvarez-Vásquez, L. J., and Viaño, J. M.. "Modeling and optimization of non-symmetric plates." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.6 (1997): 733-763. <http://eudml.org/doc/193854>.
@article{Alvarez1997,
author = {Alvarez-Vásquez, L. J., Viaño, J. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {limit model; asymptotic method; three-dimensional elasticity; existence; uniqueness; shape optimization; penalty methods},
language = {eng},
number = {6},
pages = {733-763},
publisher = {Dunod},
title = {Modeling and optimization of non-symmetric plates},
url = {http://eudml.org/doc/193854},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Alvarez-Vásquez, L. J.
AU - Viaño, J. M.
TI - Modeling and optimization of non-symmetric plates
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 6
SP - 733
EP - 763
LA - eng
KW - limit model; asymptotic method; three-dimensional elasticity; existence; uniqueness; shape optimization; penalty methods
UR - http://eudml.org/doc/193854
ER -
References
top- [1] R. ADAMS, 1975, Sobolev spaces, Academic Press, New York. Zbl0314.46030MR450957
- [2] L. J. ALVAREZ VAZQUEZ, P. QUINTELA ESTEVEZ, 1992, The effect of different scalings in the modelling of nonlinearly elastic plates with rapidly varying thickness, Comp. Meth. Appl. Mech. Eng., 96, 1-24. Zbl0759.73032MR1159590
- [3] V. BARBU, T. PRECUPANU, 1978, Convexity and optimization in Banach spaces, Sijthoff and Noordhoff, Bucharest, 1978. Zbl0379.49010MR860772
- [4] D. BLANCHARD, 1981, Justification de modèles de plaques correspondant à différentes conditions aux limites, Thesis, Univ. Pierre et Marie Curie, Paris.
- [5] D. BLANCHARD, P. G. CIARLET, 1983, A remark on the von Karman Equations, Comp. Meth. Appl. Mech. Eng., 37, 79-92. Zbl0486.73051MR699016
- [6] D. BLANCHARD, G. A. FRANCFORT, 1987, Asymptotic thermoelastic behavior of flat plates, Quart. Appl. Math., 45, 645-667. Zbl0629.73007MR917015
- [7] H. BREZIS, 1973, Opérateurs maximaux monotones et semigroupes de contractions dans les espces de Hilbert, North-Holland. Zbl0252.47055
- [8] D. CAILLERE, 1980, The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. Appl. Sci., 2, 251-270. Zbl0446.73014MR581205
- [9] E. CASAS, 1982, Análisis numerico de algunos problemas de optimización estructural, Thesis, Universidad de Santiago de Compostela.
- [10] E. CASAS, 1990, Optimality conditions and numerical approximations for some optimal design problems, Control Cibernet, 19, 73-91. Zbl0731.49010MR1118675
- [11] J. CEA, 1971, Optimisation: Théorie et Algorithmes, Dunod, Paris. Zbl0211.17402MR298892
- [12] P. G. ClARLET, 1980, A justification of the von Karman equations, Arch. Rat. Mech. Anal., 73, 349-389. Zbl0443.73034MR569597
- [13] P.G. CIARLET, 1988, Mathematical Elasticity, Vol. 1, North-Holland, Amsterdam. Zbl0648.73014MR936420
- [14] P. G. CIARLET, 1990, Plates and junctions in elastic multi-structures, Masson, Paris. Zbl0706.73046MR1071376
- [15] P. G. CIARLET, P. DESTUYNDER, 1979, A justification of the two dimensional linear plate model, J. Mécanique, 18, 315-344. Zbl0415.73072MR533827
- [16] P. G. CIARLET, P. DESTUYNDER, 1979, A justification of a nonlinear model in plate theory, Comp. Meth. Appl. Mech. Eng., 17/18, 222-258. Zbl0405.73050MR533827
- [17] P. G. ClARLET, S. KESAVAN, 1981, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory, Comp. Meth. Appl. Mech. Eng., 26, 145-172. Zbl0489.73057MR626720
- [18] P. G. ClARLET, H. LE DRET, 1989, Justification of the boundary conditions of a clamped plate by an asyptotic analysis, Asymptotic Analysis, 2, 257-277. Zbl0699.73011MR1030351
- [19] P.G CIARLET, B. MIARA, 1992, Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math., 45,327-360. Zbl0769.73050MR1151270
- [20] P. G. CIARLET, P. PAUMIER, 1985, Une justification des équations de Maguerre von Karman pour les coques peu profondes, C. R. Acad. Sc. Paris, 301, 857-860. Zbl0594.73066MR822849
- [21] P. G. CIARLET, P. RABIER, 1980, Les équations de von Karman, Lecture Notes in Mathematics, vol. 826 Springer Verlag, Berlin. Zbl0433.73019MR595326
- [22] A. CIMETIÈRE, G. GEYMONAT, H. LE DRET, A. RAOULT, Z. TUTEK, 1988, Asymptotic theory and analysis for displacements and stress distribution in non linear elstic slender rods, J. Elasticity, 19, 111-161. Zbl0653.73010MR937626
- [23] D. CIORANESCU, J. SAINT JEAN PAULIN, 1988, Reinforced and honey comb structures, J. Math. Pures Appl., 65, 403-422. Zbl0656.35031MR881689
- [24] J. L. DAVET, 1986, Justification de modèles de plaques non lineaires pour des lois de comportement générales, Mod. Math. Anal. Num., 20, 225-249. Zbl0634.73048MR852680
- [25] P. DESTUYNDER, 1980, Sur une justification des modèles de plaques et coques par les méthodes asymptotiques, Thesis, Univ. Pierre et Marie Curie.
- [26] P. DESTUYNDER, 1981, Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité, RAIRO Anal. Num., 15, 331-369. Zbl0479.73042MR642497
- [27] P. DESTUYNDER, 1985, A classification of thin shell theories, Acta. Appl. Math., 4, 15-63. Zbl0531.73044MR791261
- [28] P. DESTUYNDER, 1986, Une théorie asymptotique des plaques minces en élasticité linéaire, Masson, Paris. Zbl0627.73064MR830660
- [29] G. DUVAUT, J.L. LIONS, 1972, Les inéquations en Mécanique et en Physique, Dunod, Paris. Zbl0298.73001MR464857
- [30] I.M.N. FIGUEIREDO, 1989, Modèles de coques élastiques non linéaires : méthode asymptotique et existence de solution, Thesis, Univ. Pierre et Marie Curie, Paris.
- [31] K. O. FRIEDRICHS, R. F. DRESSLER, 1961, A boundary-layer theory for elastic plates, Comm. Pure. Appl. Math., 14, 1-33. Zbl0096.40001MR122117
- [32] A. L. GOLDENVEIZER, 1962, Derivation of an approximated theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Plikl. Mat. Mech., 26, 668-686. Zbl0118.41603MR170523
- [33] J. HASLINGER, P. NEITTANMAKI, 1988, Finite element approximation for optimal shape design, John Wiley, Chichester. Zbl0713.73062MR982710
- [34] E. J. HAUG, J.S. ARORA, 1979, Applied Optimal Design Mechanical and Strutural Systems, John Wiley, New York.
- [35] I. HLAVACEK, I. BOCK, J. LOVISEK, 1984, Optimal control of a varitional inequality with applications to structural analysis. Optimal design of a beam with unilateral supports, Appl. Math. Optim., 11, 111-143. Zbl0553.73082MR743922
- [36] I. HLAVACEK, I. BOCK, J. LOVISEK, 1984, Optimal control of a variational unequlity with applications to structural analysis II. Local optimization of the stress in a beam III. Optimal design of an elastic plate, Appl. Math. Optim., 13, 117-136. Zbl0582.73081MR794174
- [37] R.V. KOHN, M. VOGELIUS, 1984, A now model for thin plates with rapidly varying thickness, Int. J. Solids Structures, 20, 333-350. Zbl0532.73055MR739921
- [38] R. V. KOHN, M VOGELIUS, 1985, A new model for thin plates with rapidly varying thickness. II : A convergence proof, Quart. Appl. Math., 43, 1-22. Zbl0565.73046MR782253
- [39] R. V. KOHN, M. VOGELIUS, 1986, A new model for thin plates with rapidly varying thickness. III: Comparison of different scalings, Quart. Appl. Math., 44, 35-48. Zbl0605.73048MR840441
- [40] P. QUINTELA ESTEVEZ, 1989, A new model for nonlinear elastic plates with rapidly varying thickness, Applicable Analysis, 32, 107-127. Zbl0683.73027MR1017526
- [41] P. QUINTELA ESTEVEZ, 1990, A new model for nonlinear elastic plates with rapidly varying thickness II: The effect of the behavior of the forces when the thickness approaches zero, Applicable Analysis, 39, 151-164. Zbl0687.73061MR1095630
- [42] A. RAOULT, 1980, Contribution à l'étude des modèles d'évolution de plaques et à l'approximation d'équations d'évolution linéaires de second ordre par des méthodes multipas, Thesis, Univ. Pierre et Marie Curie, Paris.
- [43] A. RAOULT, 1985, Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation, Ann. Mat. Pura Appl., 139, 361-400. Zbl0596.73033MR798182
- [44] A. RAOULT, 1992, Asymptotic modeling of the elastodynamics of a multistructure, Asymptotic Analysis, 6, 73-108. Zbl0777.73033MR1188078
- [45] L. TRABUCHO, J.M. VIANO, 1996, Mathematical modelling of rods, in: (P. G. Ciarlet, J. L. Lions, eds.) Handbook of numerical analysis, Vol. IV, North-Holland, Amsterdam. Zbl0873.73041MR1422507
- [46] J.M. VIAÑO, 1983, Contribution à l'étude des modèles bidimensionnelles en thermoélasticité de plaques d'épaisseur non constante, Thesis, Univ. Pierre et Marie Curie, Paris.
- [47] K. YOSIDA, 1975, Functional Analysis, Springer Verlag, Berlin.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.