Raffinement de la borne spectrale d'un faisceau de matrices

Abdelkarim Khalil

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 1, page 101-105
  • ISSN: 0764-583X

How to cite

top

Khalil, Abdelkarim. "Raffinement de la borne spectrale d'un faisceau de matrices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.1 (1998): 101-105. <http://eudml.org/doc/193862>.

@article{Khalil1998,
author = {Khalil, Abdelkarim},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {spectral bound; matrix pencil; finite difference method; conditioning; iterative methods},
language = {fre},
number = {1},
pages = {101-105},
publisher = {Dunod},
title = {Raffinement de la borne spectrale d'un faisceau de matrices},
url = {http://eudml.org/doc/193862},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Khalil, Abdelkarim
TI - Raffinement de la borne spectrale d'un faisceau de matrices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 1
SP - 101
EP - 105
LA - fre
KW - spectral bound; matrix pencil; finite difference method; conditioning; iterative methods
UR - http://eudml.org/doc/193862
ER -

References

top
  1. [1] R. BEAUWENS. « Factorization iterative Methods, M-operateurs and H-operateurs », Numer. Math., 31 (1979), pp. 335-357. Zbl0431.65012MR516579
  2. [2] C. BERGÉ. « Théorie des graphes et ses applications », Dunod, Paris (1963). Zbl0121.40101MR155312
  3. [3] A. BERMAN et R. J. PLEMMONS. « Non negatives Matrices in the Mathematical Sciences », Academic New York (1979). Zbl0484.15016MR544666
  4. [4] A. GEORGE et J. W. H. LIU. « Computer Solution of Large Spare positive definite Systems », Prentice Hall Englewood-Cliffs (1983). Zbl0516.65010MR646786
  5. [5] M. GONDRAN et M. MINOUX. « Graphes et Algorithmes », Éditions Eyrolles (1979). Zbl0497.05023MR615739
  6. [6] R. BEAUWENS et R. WILMET. « Conditions Analysis of positive definite matrices by approximate factorizations », Journal of computational and Applied Mathematics, Vol. 26 (1989), pp. 257-269. Zbl0678.65029MR1010560

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.