Raffinement de la borne spectrale d'un faisceau de matrices

Abdelkarim Khalil

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 1, page 101-105
  • ISSN: 0764-583X

How to cite

top

Khalil, Abdelkarim. "Raffinement de la borne spectrale d'un faisceau de matrices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.1 (1998): 101-105. <http://eudml.org/doc/193862>.

@article{Khalil1998,
author = {Khalil, Abdelkarim},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {spectral bound; matrix pencil; finite difference method; conditioning; iterative methods},
language = {fre},
number = {1},
pages = {101-105},
publisher = {Dunod},
title = {Raffinement de la borne spectrale d'un faisceau de matrices},
url = {http://eudml.org/doc/193862},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Khalil, Abdelkarim
TI - Raffinement de la borne spectrale d'un faisceau de matrices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 1
SP - 101
EP - 105
LA - fre
KW - spectral bound; matrix pencil; finite difference method; conditioning; iterative methods
UR - http://eudml.org/doc/193862
ER -

References

top
  1. [1] R. BEAUWENS. « Factorization iterative Methods, M-operateurs and H-operateurs », Numer. Math., 31 (1979), pp. 335-357. Zbl0431.65012MR516579
  2. [2] C. BERGÉ. « Théorie des graphes et ses applications », Dunod, Paris (1963). Zbl0121.40101MR155312
  3. [3] A. BERMAN et R. J. PLEMMONS. « Non negatives Matrices in the Mathematical Sciences », Academic New York (1979). Zbl0484.15016MR544666
  4. [4] A. GEORGE et J. W. H. LIU. « Computer Solution of Large Spare positive definite Systems », Prentice Hall Englewood-Cliffs (1983). Zbl0516.65010MR646786
  5. [5] M. GONDRAN et M. MINOUX. « Graphes et Algorithmes », Éditions Eyrolles (1979). Zbl0497.05023MR615739
  6. [6] R. BEAUWENS et R. WILMET. « Conditions Analysis of positive definite matrices by approximate factorizations », Journal of computational and Applied Mathematics, Vol. 26 (1989), pp. 257-269. Zbl0678.65029MR1010560

NotesEmbed ?

top

You must be logged in to post comments.