Some numerical methods for the study of the convexity notions arising in the calculus of variations

Bernard Dacorogna; Jean-Pierre Haeberly

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 2, page 153-175
  • ISSN: 0764-583X

How to cite

top

Dacorogna, Bernard, and Haeberly, Jean-Pierre. "Some numerical methods for the study of the convexity notions arising in the calculus of variations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.2 (1998): 153-175. <http://eudml.org/doc/193870>.

@article{Dacorogna1998,
author = {Dacorogna, Bernard, Haeberly, Jean-Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical examples; sequential weak lower semicontinuity; convexity; quasiconvexity},
language = {eng},
number = {2},
pages = {153-175},
publisher = {Dunod},
title = {Some numerical methods for the study of the convexity notions arising in the calculus of variations},
url = {http://eudml.org/doc/193870},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Dacorogna, Bernard
AU - Haeberly, Jean-Pierre
TI - Some numerical methods for the study of the convexity notions arising in the calculus of variations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 2
SP - 153
EP - 175
LA - eng
KW - numerical examples; sequential weak lower semicontinuity; convexity; quasiconvexity
UR - http://eudml.org/doc/193870
ER -

References

top
  1. [1] J. J. AUBERT and B. DACOROGNA: An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Rational Mech. Anal., 117, 155-166 (1992). Zbl0761.26009MR1145109
  2. [2] F. ALUFFI-PENTINI, V. PARISI and F. ZIRILLI: Global optimization and stochastic differential equations, JOTA 47, 1-16 (1985). Zbl0549.65038MR802386
  3. [3] G. AUBERT: Contribution aux problèmes du calcul des variations et applications à l'élasticité non linéaire, Thèse de doctorat, Paris VI (1986). 
  4. [4] J. M. BALL: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 64, 337-403 (1977). Zbl0368.73040MR475169
  5. [5] J. M. BALL and F. MURAT: W1,p quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58, 225-253 (1984). Zbl0549.46019MR759098
  6. [6] B. BRIGHI and M. CHIPOT: Approximated Convex Envelope of a Function, SIAM J. Numer. Anal. 31, 128-148 (1994). Zbl0796.65009MR1259969
  7. [7] M. CHIPOT: Numerical analysis of oscillations in nonconvex problems, Numer. Math. 59, 747-767 (1991). Zbl0712.65063MR1128031
  8. [8] M. CHIPOT and C. COLLINS: Numerical approximations in variational problems with potential wells, SIAM J. Numer. Anal. 29, 1002-1019 (1992). Zbl0763.65049MR1173182
  9. [9] M. CHIPOT and V. LÉCUYER: Analysis and computations in the four-well problem, Preprint. Zbl0866.49031MR1422927
  10. [10] C. COLLINS, D. KINDERLEHRER and M. LUSKIN: Numerical approximation of the solution of a variational problem with a double well potential, SIAM J. Numer. Anal. 28, 321-332 (1991). Zbl0725.65067MR1087507
  11. [11] C. COLLINS and M. LUSKIN: Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem, Math. Comp. 57, 621-637 (1991). Zbl0735.65042MR1094944
  12. [12] B. DACOROGNA: Direct Methods in the Calculus of Variations, Berlin : Springer 1989. Zbl0703.49001MR990890
  13. [13] B. DACOROGNA, J. DOUCHET, W. GANGBO and J. RAPPAZ: Some examples of rank one convex functions in dimension two, Proc. of Royal Soc. Edinburgh 114A, 135-150 (1990). Zbl0722.49018MR1051612
  14. [14] B. DACOROGNA and J. P. HAEBERLY: Remarks on a Numerical Study of Convexity, Quasiconvexity and Rank One Convexity, in Progress in Nonlinear Differential Equations and Their Applications, vol. 25, pp. 143-154, R. Serapioni and F. Tomarelli, Eds., Basel: Birkhäuser 1996. Zbl0898.49012MR1414497
  15. [15] B. DACOROGNA and J.-P. HAEBERLY: On Convexity Properties of Homogeneous Functions of Degree One, Proc. of Royal Soc. Edinburgh 126, 947-956 (1996). Zbl0895.49002MR1415815
  16. [16] B. DACOROGNA and P. MARCELLINI: A counterexample in the vectorial calculus of variations, in Material instabilities in continuum mechanics, pp. 77-83, proceedings edited by J.-M. Ball, Oxford : Oxford Science Publc. 1988. Zbl0641.49007MR970519
  17. [17] P. GILL, W. MURRAY and M. WRIGHT: Practical Optimization, London : Academic Press 1981. Zbl0503.90062MR634376
  18. [18] P. A. GREMAUD: Numerical optimization and quasiconvexity, IMA Preprint Series #1133, University of Minnesota, April 1993. Zbl0824.65043MR1317874
  19. [19] H. HARTWIG: A polyconvexity condition in dimension two, Proc. of Royal Soc. Edinburgh 125A, 901-910 (1995). Zbl0839.49013MR1361623
  20. [20] T. IWANIEC and A. LUTOBORSKI: Integral estimates for null Lagrangian, Arch. Rational Mech. Anal.125, 25-79 (1993). Zbl0793.58002MR1241286
  21. [21] D. C. LIU and J. NOCEDAL: On the limited memory BFGS method for large scale optimization, Math. Program. 45, 503-528 (1989). Zbl0696.90048MR1038245
  22. [22] J. J. MORÉ and S. J. WRIGHT: Optimization Software Guide, Frontiers in Applied Mathematics 14, Philadelphia : SIAM 1993. Zbl0830.65050MR1245493
  23. [23] C. B. MORREY: Quasiconvexity and the semicontinuity of multiple integrals, Pacific J. Math. 2, 25-53 (1952). Zbl0046.10803MR54865
  24. [24] J. NOCEDAL: Theory of algorithms for unconstrained optimization, Acta Numerica, 199-242 (1991). Zbl0766.65051MR1165726
  25. [25] M. OVERTON: On minimizing the maximum eigenvalue of a symmetric matrix, SIAM J. Matrix Anal. Appl. 9, 256-268 (1988). Zbl0647.65044MR938560
  26. [26] M. OVERTON: Large-scale optimization of eigenvalues, SIAM J. Optim. 2, 88-120 (1992). Zbl0757.65072MR1147885
  27. [27] W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING and B. P. FLANNERY: Numerical Recipes in C, 2nd ed., Cambridge: Cambridge University Press. 1992. Zbl0845.65001MR1201159
  28. [28] F. F. SHANNO: Conjugate gradient methods with inexact searches, Math. Oper. Res. 3, 244-236 (1978). Zbl0399.90077MR506662
  29. [29] D. F. SHANNO and K. H. PHUA : Remark on algorithm 500 : minimization of unconstrained multivariate functions, ACM Trans. on Math. Software 6, 618-622 (1980). 
  30. [30] V. SVERAK : Rank one convexity does not imply quasiconvexity, Proc. of Royal Soc. Edinburgh, 120A, 185-189 (1992). Zbl0777.49015MR1149994
  31. [31] M. TOMASSlNI : A survey of genetic algorithms, to appear in Annual Reviews of Computational Physics, 3, World Scientific. MR1415152
  32. [32] J. L. ZHOU and A. L. TITS : User's guide for FSQP version 3.4 (released December 1994), Systems Research Center TR-92-107r4, University of Maryland. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.