Some numerical methods for the study of the convexity notions arising in the calculus of variations
Bernard Dacorogna; Jean-Pierre Haeberly
- Volume: 32, Issue: 2, page 153-175
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDacorogna, Bernard, and Haeberly, Jean-Pierre. "Some numerical methods for the study of the convexity notions arising in the calculus of variations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.2 (1998): 153-175. <http://eudml.org/doc/193870>.
@article{Dacorogna1998,
author = {Dacorogna, Bernard, Haeberly, Jean-Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical examples; sequential weak lower semicontinuity; convexity; quasiconvexity},
language = {eng},
number = {2},
pages = {153-175},
publisher = {Dunod},
title = {Some numerical methods for the study of the convexity notions arising in the calculus of variations},
url = {http://eudml.org/doc/193870},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Dacorogna, Bernard
AU - Haeberly, Jean-Pierre
TI - Some numerical methods for the study of the convexity notions arising in the calculus of variations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 2
SP - 153
EP - 175
LA - eng
KW - numerical examples; sequential weak lower semicontinuity; convexity; quasiconvexity
UR - http://eudml.org/doc/193870
ER -
References
top- [1] J. J. AUBERT and B. DACOROGNA: An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Rational Mech. Anal., 117, 155-166 (1992). Zbl0761.26009MR1145109
- [2] F. ALUFFI-PENTINI, V. PARISI and F. ZIRILLI: Global optimization and stochastic differential equations, JOTA 47, 1-16 (1985). Zbl0549.65038MR802386
- [3] G. AUBERT: Contribution aux problèmes du calcul des variations et applications à l'élasticité non linéaire, Thèse de doctorat, Paris VI (1986).
- [4] J. M. BALL: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 64, 337-403 (1977). Zbl0368.73040MR475169
- [5] J. M. BALL and F. MURAT: W1,p quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58, 225-253 (1984). Zbl0549.46019MR759098
- [6] B. BRIGHI and M. CHIPOT: Approximated Convex Envelope of a Function, SIAM J. Numer. Anal. 31, 128-148 (1994). Zbl0796.65009MR1259969
- [7] M. CHIPOT: Numerical analysis of oscillations in nonconvex problems, Numer. Math. 59, 747-767 (1991). Zbl0712.65063MR1128031
- [8] M. CHIPOT and C. COLLINS: Numerical approximations in variational problems with potential wells, SIAM J. Numer. Anal. 29, 1002-1019 (1992). Zbl0763.65049MR1173182
- [9] M. CHIPOT and V. LÉCUYER: Analysis and computations in the four-well problem, Preprint. Zbl0866.49031MR1422927
- [10] C. COLLINS, D. KINDERLEHRER and M. LUSKIN: Numerical approximation of the solution of a variational problem with a double well potential, SIAM J. Numer. Anal. 28, 321-332 (1991). Zbl0725.65067MR1087507
- [11] C. COLLINS and M. LUSKIN: Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem, Math. Comp. 57, 621-637 (1991). Zbl0735.65042MR1094944
- [12] B. DACOROGNA: Direct Methods in the Calculus of Variations, Berlin : Springer 1989. Zbl0703.49001MR990890
- [13] B. DACOROGNA, J. DOUCHET, W. GANGBO and J. RAPPAZ: Some examples of rank one convex functions in dimension two, Proc. of Royal Soc. Edinburgh 114A, 135-150 (1990). Zbl0722.49018MR1051612
- [14] B. DACOROGNA and J. P. HAEBERLY: Remarks on a Numerical Study of Convexity, Quasiconvexity and Rank One Convexity, in Progress in Nonlinear Differential Equations and Their Applications, vol. 25, pp. 143-154, R. Serapioni and F. Tomarelli, Eds., Basel: Birkhäuser 1996. Zbl0898.49012MR1414497
- [15] B. DACOROGNA and J.-P. HAEBERLY: On Convexity Properties of Homogeneous Functions of Degree One, Proc. of Royal Soc. Edinburgh 126, 947-956 (1996). Zbl0895.49002MR1415815
- [16] B. DACOROGNA and P. MARCELLINI: A counterexample in the vectorial calculus of variations, in Material instabilities in continuum mechanics, pp. 77-83, proceedings edited by J.-M. Ball, Oxford : Oxford Science Publc. 1988. Zbl0641.49007MR970519
- [17] P. GILL, W. MURRAY and M. WRIGHT: Practical Optimization, London : Academic Press 1981. Zbl0503.90062MR634376
- [18] P. A. GREMAUD: Numerical optimization and quasiconvexity, IMA Preprint Series #1133, University of Minnesota, April 1993. Zbl0824.65043MR1317874
- [19] H. HARTWIG: A polyconvexity condition in dimension two, Proc. of Royal Soc. Edinburgh 125A, 901-910 (1995). Zbl0839.49013MR1361623
- [20] T. IWANIEC and A. LUTOBORSKI: Integral estimates for null Lagrangian, Arch. Rational Mech. Anal.125, 25-79 (1993). Zbl0793.58002MR1241286
- [21] D. C. LIU and J. NOCEDAL: On the limited memory BFGS method for large scale optimization, Math. Program. 45, 503-528 (1989). Zbl0696.90048MR1038245
- [22] J. J. MORÉ and S. J. WRIGHT: Optimization Software Guide, Frontiers in Applied Mathematics 14, Philadelphia : SIAM 1993. Zbl0830.65050MR1245493
- [23] C. B. MORREY: Quasiconvexity and the semicontinuity of multiple integrals, Pacific J. Math. 2, 25-53 (1952). Zbl0046.10803MR54865
- [24] J. NOCEDAL: Theory of algorithms for unconstrained optimization, Acta Numerica, 199-242 (1991). Zbl0766.65051MR1165726
- [25] M. OVERTON: On minimizing the maximum eigenvalue of a symmetric matrix, SIAM J. Matrix Anal. Appl. 9, 256-268 (1988). Zbl0647.65044MR938560
- [26] M. OVERTON: Large-scale optimization of eigenvalues, SIAM J. Optim. 2, 88-120 (1992). Zbl0757.65072MR1147885
- [27] W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING and B. P. FLANNERY: Numerical Recipes in C, 2nd ed., Cambridge: Cambridge University Press. 1992. Zbl0845.65001MR1201159
- [28] F. F. SHANNO: Conjugate gradient methods with inexact searches, Math. Oper. Res. 3, 244-236 (1978). Zbl0399.90077MR506662
- [29] D. F. SHANNO and K. H. PHUA : Remark on algorithm 500 : minimization of unconstrained multivariate functions, ACM Trans. on Math. Software 6, 618-622 (1980).
- [30] V. SVERAK : Rank one convexity does not imply quasiconvexity, Proc. of Royal Soc. Edinburgh, 120A, 185-189 (1992). Zbl0777.49015MR1149994
- [31] M. TOMASSlNI : A survey of genetic algorithms, to appear in Annual Reviews of Computational Physics, 3, World Scientific. MR1415152
- [32] J. L. ZHOU and A. L. TITS : User's guide for FSQP version 3.4 (released December 1994), Systems Research Center TR-92-107r4, University of Maryland.
Citations in EuDML Documents
top- Sören Bartels, Linear convergence in the approximation of rank-one convex envelopes
- Sören Bartels, Linear convergence in the approximation of rank-one convex envelopes
- Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
- Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.