On conservative and entropic discrete axisymmetric Fokker-Planck operators
Emmanuel Frénod; Brigitte Lucquin-Desreux
- Volume: 32, Issue: 3, page 307-339
- ISSN: 0764-583X
Access Full Article
topHow to cite
topFrénod, Emmanuel, and Lucquin-Desreux, Brigitte. "On conservative and entropic discrete axisymmetric Fokker-Planck operators." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.3 (1998): 307-339. <http://eudml.org/doc/193876>.
@article{Frénod1998,
author = {Frénod, Emmanuel, Lucquin-Desreux, Brigitte},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Fokker-Planck equation; cylindrical coordinates; conservation of mass, momentum and energy; decrease of kinetic entropy},
language = {eng},
number = {3},
pages = {307-339},
publisher = {Dunod},
title = {On conservative and entropic discrete axisymmetric Fokker-Planck operators},
url = {http://eudml.org/doc/193876},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Frénod, Emmanuel
AU - Lucquin-Desreux, Brigitte
TI - On conservative and entropic discrete axisymmetric Fokker-Planck operators
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 3
SP - 307
EP - 339
LA - eng
KW - Fokker-Planck equation; cylindrical coordinates; conservation of mass, momentum and energy; decrease of kinetic entropy
UR - http://eudml.org/doc/193876
ER -
References
top- [1] M. ABRAHAMOWITZ & I. A. STEGUNHandbook of mathematematical functions. Dover Publications, INC, New York.
- [2] V. V. ARISTOV & F. G. CHEREMISIN, 1980, The conservative splitting method for solving Boltzmann's equation. U.S.R.R. Comput. Maths. Math. Phys., Vol. 20, No. 1, p. 208-225. Zbl0458.76061MR564789
- [3] A. A. ARSENEV & O. E. BURYAK, 1991, On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation. Math. U.S.S.R. Sbornik, Vol. 69, No. 2, p. 465-478. Zbl0724.35090MR1055522
- [4] A. A. ARSENEV & N. V. PESKOV, 1978, On the existence of a generalized solution of Landau's equation. U.S.S.R. Comput. Maths. Math. Phys., Vol. 17, p. 241-246. Zbl0383.35064MR470442
- [5] Yu. A. BEREZIN, M. S. PEKKER & V. N. KUDICK, 1987, Conservative Finite-Difference Schemes for the Fokker-Planck Equation Not Violating the Low of an Increasing Entropy. Jour. of comp. phys., Vol. 69, p. 163-174. Zbl0644.76091MR892257
- [6] R. L. BERGER, J. R. ALBRITTON, C. J. RANDALL, E. A. WILLIAMS, W. L. KRUER, A. B. LANGDON & C. J. HANNA, 1990, Stopping and thermahzation of interpenetrating plasma streams. Phys. Fluids B, Vol. 3, No. 1.
- [7] A. V. BOBYLEV, 1981, Expansion of the Boltzmann collision integral in a Laudau series. Sov. Phys. Dolk., Vol. 20, No. 11, p. 740-742.
- [8] A. V. BOBYLEV, I. F. POTAPENKO & V. A. CHUYANOV, Kinetic equations of the Landau type as a model of the Boltzmann equation and completely conservative difference schemes. U.S.R.R. Comput. Maths. Math. Phys., Vol. 20, No. 4, p. 190-201. Zbl0493.76078MR585294
- [9] D. DECK & G. SAMBA, 1994, Le code Procions. Note CEA No. N 2780, CEA/CEL-V, F-94195 Villeneuve St. Georges Cedex.
- [10] L. DESVILLETTES, 1992, On asymptotics of the Boltzmann equation when the collisions become grazing. Trans. Th. and Stat. Phys., Vol. 21, No. 3, p. 259-276. Zbl0769.76059MR1165528
- [11] P. DEGOND & B. LUCQUIN-DESREUX, 1992, The Fokker-Plank assymptotics of the Boltzmann operator in the Coulomb case. Math. Mod. and Meth. in Appl. Sc., Vol. 2, No. 2, p. 167-182. Zbl0755.35091MR1167768
- [12] P. DEGOND & B. LUCQUIN-DESREUX, 1994, An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory. Numer. Math., Vol. 68, p. 239-262. Zbl0806.65133MR1283340
- [13] I. S. GRADSHTEYN & I. M. RYZHIK, Table of integrals, series and products. Academic press. Zbl0918.65002MR1773820
- [14] N. A. KRALL & A. W. TRIVELPIECE, 1973, Principles of plasma physics. Mc Graw Hill book company.
- [15] S. JORNA & L. WOOD, 1987, Fokker-Planck calculations on relaxation of anisotropic velocity distributions in plasmas. Phys. rev. A, Vol. 36, No. 1.
- [16] O. LARROCHE, 1993, Kinetic simulation of a plasma collision experiment. Phys. Fluids B, Vol. 5, No. 8.
- [17] M. LEMOU, C. BUET, S. CORDIER & P. DEGOND, A numerical, conservative and entropic scheme for the Fokker-Planck equation. In preparation. Zbl0880.65112
- [18] B. LUCQUIN-DESREUX, 1992, Discrétisation de l'opérateur de Fokker-Planck dans le cas homogène. C. R. Acad. Sci., Paris, t. 314, p. 407-411. Zbl0749.35034MR1153725
- [19] W. M. MAC DONALD, M. N. ROSENBLUTH & W. CHUCK, 1957, Relaxation of a system of particles with Coulomb interactions. Phys. Rev., Vol. 107, No. 2. Zbl0085.44701MR87304
- [20] M. S. PEKKER & V. N. KUDICK, 1984, Conservative Difference Schemes for the Fokker-Planck Equation. U.S.R.R. Comput. Maths. Math. Phys., Vol. 24, No. 3, p. 206-210. MR750108
- [21] I. F. POTAPENKO & V. A. CHUYANOV, 1979, A completely conservative difference scheme for the two-dimensional Landau equation. U.S.R.R. Comput. Math. Math. Phys., Vol. 20, No. 2, p. 249-253. MR572407
- [22] J. C. WITNEY, 1970, Finite Difference Methods for the Fokker-Planck Equation. J. Comp. Phys., Vol. 6, p. 483-509. Zbl0203.48501MR273833
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.