On conservative and entropic discrete axisymmetric Fokker-Planck operators

Emmanuel Frénod; Brigitte Lucquin-Desreux

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 3, page 307-339
  • ISSN: 0764-583X

How to cite

top

Frénod, Emmanuel, and Lucquin-Desreux, Brigitte. "On conservative and entropic discrete axisymmetric Fokker-Planck operators." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.3 (1998): 307-339. <http://eudml.org/doc/193876>.

@article{Frénod1998,
author = {Frénod, Emmanuel, Lucquin-Desreux, Brigitte},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Fokker-Planck equation; cylindrical coordinates; conservation of mass, momentum and energy; decrease of kinetic entropy},
language = {eng},
number = {3},
pages = {307-339},
publisher = {Dunod},
title = {On conservative and entropic discrete axisymmetric Fokker-Planck operators},
url = {http://eudml.org/doc/193876},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Frénod, Emmanuel
AU - Lucquin-Desreux, Brigitte
TI - On conservative and entropic discrete axisymmetric Fokker-Planck operators
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 3
SP - 307
EP - 339
LA - eng
KW - Fokker-Planck equation; cylindrical coordinates; conservation of mass, momentum and energy; decrease of kinetic entropy
UR - http://eudml.org/doc/193876
ER -

References

top
  1. [1] M. ABRAHAMOWITZ & I. A. STEGUNHandbook of mathematematical functions. Dover Publications, INC, New York. 
  2. [2] V. V. ARISTOV & F. G. CHEREMISIN, 1980, The conservative splitting method for solving Boltzmann's equation. U.S.R.R. Comput. Maths. Math. Phys., Vol. 20, No. 1, p. 208-225. Zbl0458.76061MR564789
  3. [3] A. A. ARSENEV & O. E. BURYAK, 1991, On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation. Math. U.S.S.R. Sbornik, Vol. 69, No. 2, p. 465-478. Zbl0724.35090MR1055522
  4. [4] A. A. ARSENEV & N. V. PESKOV, 1978, On the existence of a generalized solution of Landau's equation. U.S.S.R. Comput. Maths. Math. Phys., Vol. 17, p. 241-246. Zbl0383.35064MR470442
  5. [5] Yu. A. BEREZIN, M. S. PEKKER & V. N. KUDICK, 1987, Conservative Finite-Difference Schemes for the Fokker-Planck Equation Not Violating the Low of an Increasing Entropy. Jour. of comp. phys., Vol. 69, p. 163-174. Zbl0644.76091MR892257
  6. [6] R. L. BERGER, J. R. ALBRITTON, C. J. RANDALL, E. A. WILLIAMS, W. L. KRUER, A. B. LANGDON & C. J. HANNA, 1990, Stopping and thermahzation of interpenetrating plasma streams. Phys. Fluids B, Vol. 3, No. 1. 
  7. [7] A. V. BOBYLEV, 1981, Expansion of the Boltzmann collision integral in a Laudau series. Sov. Phys. Dolk., Vol. 20, No. 11, p. 740-742. 
  8. [8] A. V. BOBYLEV, I. F. POTAPENKO & V. A. CHUYANOV, Kinetic equations of the Landau type as a model of the Boltzmann equation and completely conservative difference schemes. U.S.R.R. Comput. Maths. Math. Phys., Vol. 20, No. 4, p. 190-201. Zbl0493.76078MR585294
  9. [9] D. DECK & G. SAMBA, 1994, Le code Procions. Note CEA No. N 2780, CEA/CEL-V, F-94195 Villeneuve St. Georges Cedex. 
  10. [10] L. DESVILLETTES, 1992, On asymptotics of the Boltzmann equation when the collisions become grazing. Trans. Th. and Stat. Phys., Vol. 21, No. 3, p. 259-276. Zbl0769.76059MR1165528
  11. [11] P. DEGOND & B. LUCQUIN-DESREUX, 1992, The Fokker-Plank assymptotics of the Boltzmann operator in the Coulomb case. Math. Mod. and Meth. in Appl. Sc., Vol. 2, No. 2, p. 167-182. Zbl0755.35091MR1167768
  12. [12] P. DEGOND & B. LUCQUIN-DESREUX, 1994, An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory. Numer. Math., Vol. 68, p. 239-262. Zbl0806.65133MR1283340
  13. [13] I. S. GRADSHTEYN & I. M. RYZHIK, Table of integrals, series and products. Academic press. Zbl0918.65002MR1773820
  14. [14] N. A. KRALL & A. W. TRIVELPIECE, 1973, Principles of plasma physics. Mc Graw Hill book company. 
  15. [15] S. JORNA & L. WOOD, 1987, Fokker-Planck calculations on relaxation of anisotropic velocity distributions in plasmas. Phys. rev. A, Vol. 36, No. 1. 
  16. [16] O. LARROCHE, 1993, Kinetic simulation of a plasma collision experiment. Phys. Fluids B, Vol. 5, No. 8. 
  17. [17] M. LEMOU, C. BUET, S. CORDIER & P. DEGOND, A numerical, conservative and entropic scheme for the Fokker-Planck equation. In preparation. Zbl0880.65112
  18. [18] B. LUCQUIN-DESREUX, 1992, Discrétisation de l'opérateur de Fokker-Planck dans le cas homogène. C. R. Acad. Sci., Paris, t. 314, p. 407-411. Zbl0749.35034MR1153725
  19. [19] W. M. MAC DONALD, M. N. ROSENBLUTH & W. CHUCK, 1957, Relaxation of a system of particles with Coulomb interactions. Phys. Rev., Vol. 107, No. 2. Zbl0085.44701MR87304
  20. [20] M. S. PEKKER & V. N. KUDICK, 1984, Conservative Difference Schemes for the Fokker-Planck Equation. U.S.R.R. Comput. Maths. Math. Phys., Vol. 24, No. 3, p. 206-210. MR750108
  21. [21] I. F. POTAPENKO & V. A. CHUYANOV, 1979, A completely conservative difference scheme for the two-dimensional Landau equation. U.S.R.R. Comput. Math. Math. Phys., Vol. 20, No. 2, p. 249-253. MR572407
  22. [22] J. C. WITNEY, 1970, Finite Difference Methods for the Fokker-Planck Equation. J. Comp. Phys., Vol. 6, p. 483-509. Zbl0203.48501MR273833

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.