An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance
Alain Campbell; Sergueï Nazarov
- Volume: 32, Issue: 5, page 579-610
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCampbell, Alain, and Nazarov, Sergueï. "An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.5 (1998): 579-610. <http://eudml.org/doc/193887>.
@article{Campbell1998,
author = {Campbell, Alain, Nazarov, Sergueï},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {limiting behaviour of solution; vibrating plate; small inclusion},
language = {eng},
number = {5},
pages = {579-610},
publisher = {Dunod},
title = {An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance},
url = {http://eudml.org/doc/193887},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Campbell, Alain
AU - Nazarov, Sergueï
TI - An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 5
SP - 579
EP - 610
LA - eng
KW - limiting behaviour of solution; vibrating plate; small inclusion
UR - http://eudml.org/doc/193887
ER -
References
top- [1] A. CAMPBELL and S. NAZAROV, Comportement d'une plaque élastique dont une petite région est rigide et animée d'un mouvement vibratoire. Étude asymptotique de la matrice d'impédance. Annales de la Faculté des Sciences de Toulouse, IV, 1995, n°2, p 211-242. Zbl0834.73041MR1344721
- [2] A. CAMPBELL and S. NAZAROV, Une justification de la méthode de raccordement de développements asymptotiques appliquée à un problème de plaque. Journal de Mathématiques Pure et Appliquées, 1996, Série 9. Tome 76, n° 1, pp 15-54, 1997. Zbl0877.35125MR1429996
- [3] I. C. GOHBERG and M. G. KREJN, Opérateurs linéaires non auto-adjoints dans un espace hilbertien, Dunod, Paris, 1971. MR350445
- [4] A. M. ILYIN, Matching of asymptotic expansions of solutions of boundary value problem (in russian), Nauka, Moscou, 1989, translated in english in Amer. Math. Soc., Providence, 1992. Zbl0671.35002MR1007834
- [5] V. KONDRATIEV, Boundary value problems for elliptic equations in domains with conical or angular points (in russian), Trady Moskov. Mat. Obshch. 16, 1967, p. 209-212, translated in enghsh in Trans. Moskov. Math. Soc., 16, 1967. Zbl0194.13405MR226187
- [6] D. LEGUILLON and E. SANCHEZ-PALENCIA, Computation of singular solutions in elliptic problems and elasticity, Paris, New-York, Masson-Wiley, 1987. Zbl0647.73010MR995254
- [7] V. MAZYA, S. NAZAROV and B. PLAMENEVSKI, On the asymptotic behaviour of solutions of elliptic boundary value problems with irregular perturbations of the domain (in russian), Problemy Mat. Anal. 8. Izdat. Leningrad. Gos. Univ., Leningrad, 1981, p. 72-153. Zbl0491.35013MR658154
- [8] V. MARYA, S. NAZAROV and B. PLAMENEVSKI, Asymptotishe theorie elliptischer randwertaufgaben in singulär gestörten gebieten. Bd. 1 & 2,Berlin, Academie-Verlag, 1990-91.
- [9] S. NAZAROV and B. PLAMENEVSKI, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter, Berlin, 1994. Zbl0806.35001MR1283387
- [10] J. SANCHEZ-HUBERT and E. SANCHEZ-PALENCIA, Vibration and coupling of continuons Systems, Springer, Berlin, 1989. Zbl0698.70003MR996423
- [11] M. D. VAN DYKE, Perturbations methods in fluid mechanics, Academic Press, New-York, 1964. Zbl0136.45001MR176702
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.