Pseudospectre d'une suite d'opérateurs bornés

A. Harrabi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 6, page 671-680
  • ISSN: 0764-583X

How to cite

top

Harrabi, A.. "Pseudospectre d'une suite d'opérateurs bornés." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.6 (1998): 671-680. <http://eudml.org/doc/193891>.

@article{Harrabi1998,
author = {Harrabi, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {operator family; continuity of the -pseudospectrum; uniform convergence; collectively compact convergence; triangular matrices},
language = {fre},
number = {6},
pages = {671-680},
publisher = {Dunod},
title = {Pseudospectre d'une suite d'opérateurs bornés},
url = {http://eudml.org/doc/193891},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Harrabi, A.
TI - Pseudospectre d'une suite d'opérateurs bornés
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 6
SP - 671
EP - 680
LA - fre
KW - operator family; continuity of the -pseudospectrum; uniform convergence; collectively compact convergence; triangular matrices
UR - http://eudml.org/doc/193891
ER -

References

top
  1. [1] P. M. ANSELONE, Collectively Compact Operator Approximation Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1971. Zbl0228.47001MR443383
  2. [2] P. M. ANSELONE and T. W. PALMER, Collectively compact sets of linear operators, Pacific Journal of Mathematics, 25, No 3. 417- 422, 1968. Zbl0157.45202MR227806
  3. [3] P. M. ANSELONE and T. W. PALMER, Spectral analysis of collectively compact, strongly convergent operator sequences, Pacific Journal of Mathematics, 25, No. 3. 423-431, 1968. Zbl0157.45203MR227807
  4. [4] A. BÖTTCHER, Pseudospectra and singular values of large convolution operators, J. Int. Eqs. Applics, 6: 267-301, 1994. Zbl0819.45002MR1312518
  5. [5] H. BREZIS, Analyse Fonctionnelle. Théorie et applications, Masson, quatrième édition, 1993. Zbl0511.46001MR697382
  6. [6] F. CHAITIN-CHATELIN and V. FRAYSSÉ, Lectures on Finite Precision Computations, SIAM, 1996. Zbl0846.65020MR1381897
  7. [7] F. CHATELIN, Spectral Approximation of linear operators, Academic Press, New York, 1983. Zbl0517.65036MR716134
  8. [8] N. DUNFORD and J. T. SCHWARTZ, Linear operators, part I, general theory. Wiley (Interscience), New York, 1958. Zbl0084.10402MR1009162
  9. [9] S.K. GODUNOV and V. S. RYABENKI, Theory of Difference Schemes: an Introduction. North-Holland, Amsterdam, 1964. Translation by E. Godfedsen. Zbl0116.33102MR181117
  10. [10] T. KATO, Perturbation theory for linear operators, Springer, New York, 1976. Zbl0342.47009MR407617
  11. [11] H. J. LANDAU, On Szegö's eigenvalue distribution theorem and non-hermitian kernels, J. Analyse Math., 28 : 335-357, 1975. Zbl0321.45005MR487600
  12. [12] E. R. LORCH, The spectrum of linear transformation, Transactions of American Mathematical Society, 52: 238-248, 1942. Zbl0060.27203MR8121
  13. [13] O. NEVANLINNA, Convergence iterations for linear equations, Birkhauser, Basel, 1993. Zbl0846.47008MR1217705
  14. [14] J. D. NEWBURGH, The variation of spectra, Duke Math. J., 5: 165-176, 1951. Zbl0042.12302MR51441
  15. [15] S. C. REDDY, Pseudospectra of Wiener-Hopf integral operators and constant-coefficient difference operators, J. Integral. Eqs. Applics, 5: 369-403, 1993. Zbl0805.47023MR1248497
  16. [16] L. REICHEL and L. N. TREFETHEN, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear algebra and its applications 162-164, pages 153-185, 1992. Zbl0748.15010MR1148398
  17. [17] A. E. TAYLOR, The resolvent of a closed transformation, Bull. AMS, 44: 70-74, 1938. Zbl0018.36503MR1563683
  18. [18] L. N. TREFETHEN, Pseudospectra of matrices. In Numerical Analysis. 1991, D. F. Griffiths and G. A. Watson editors, Longman, Harlow, 1992. Zbl0798.15005MR1177237
  19. [19] L. N. TREFETHEN, Pseudospectra of linear operators. SIAM Rev., 39: 383-406, 1997. Zbl0896.15006MR1469941

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.