Pseudospectre d'une suite d'opérateurs bornés
- Volume: 32, Issue: 6, page 671-680
- ISSN: 0764-583X
Access Full Article
topHow to cite
topHarrabi, A.. "Pseudospectre d'une suite d'opérateurs bornés." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.6 (1998): 671-680. <http://eudml.org/doc/193891>.
@article{Harrabi1998,
author = {Harrabi, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {operator family; continuity of the -pseudospectrum; uniform convergence; collectively compact convergence; triangular matrices},
language = {fre},
number = {6},
pages = {671-680},
publisher = {Dunod},
title = {Pseudospectre d'une suite d'opérateurs bornés},
url = {http://eudml.org/doc/193891},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Harrabi, A.
TI - Pseudospectre d'une suite d'opérateurs bornés
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 6
SP - 671
EP - 680
LA - fre
KW - operator family; continuity of the -pseudospectrum; uniform convergence; collectively compact convergence; triangular matrices
UR - http://eudml.org/doc/193891
ER -
References
top- [1] P. M. ANSELONE, Collectively Compact Operator Approximation Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1971. Zbl0228.47001MR443383
- [2] P. M. ANSELONE and T. W. PALMER, Collectively compact sets of linear operators, Pacific Journal of Mathematics, 25, No 3. 417- 422, 1968. Zbl0157.45202MR227806
- [3] P. M. ANSELONE and T. W. PALMER, Spectral analysis of collectively compact, strongly convergent operator sequences, Pacific Journal of Mathematics, 25, No. 3. 423-431, 1968. Zbl0157.45203MR227807
- [4] A. BÖTTCHER, Pseudospectra and singular values of large convolution operators, J. Int. Eqs. Applics, 6: 267-301, 1994. Zbl0819.45002MR1312518
- [5] H. BREZIS, Analyse Fonctionnelle. Théorie et applications, Masson, quatrième édition, 1993. Zbl0511.46001MR697382
- [6] F. CHAITIN-CHATELIN and V. FRAYSSÉ, Lectures on Finite Precision Computations, SIAM, 1996. Zbl0846.65020MR1381897
- [7] F. CHATELIN, Spectral Approximation of linear operators, Academic Press, New York, 1983. Zbl0517.65036MR716134
- [8] N. DUNFORD and J. T. SCHWARTZ, Linear operators, part I, general theory. Wiley (Interscience), New York, 1958. Zbl0084.10402MR1009162
- [9] S.K. GODUNOV and V. S. RYABENKI, Theory of Difference Schemes: an Introduction. North-Holland, Amsterdam, 1964. Translation by E. Godfedsen. Zbl0116.33102MR181117
- [10] T. KATO, Perturbation theory for linear operators, Springer, New York, 1976. Zbl0342.47009MR407617
- [11] H. J. LANDAU, On Szegö's eigenvalue distribution theorem and non-hermitian kernels, J. Analyse Math., 28 : 335-357, 1975. Zbl0321.45005MR487600
- [12] E. R. LORCH, The spectrum of linear transformation, Transactions of American Mathematical Society, 52: 238-248, 1942. Zbl0060.27203MR8121
- [13] O. NEVANLINNA, Convergence iterations for linear equations, Birkhauser, Basel, 1993. Zbl0846.47008MR1217705
- [14] J. D. NEWBURGH, The variation of spectra, Duke Math. J., 5: 165-176, 1951. Zbl0042.12302MR51441
- [15] S. C. REDDY, Pseudospectra of Wiener-Hopf integral operators and constant-coefficient difference operators, J. Integral. Eqs. Applics, 5: 369-403, 1993. Zbl0805.47023MR1248497
- [16] L. REICHEL and L. N. TREFETHEN, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear algebra and its applications 162-164, pages 153-185, 1992. Zbl0748.15010MR1148398
- [17] A. E. TAYLOR, The resolvent of a closed transformation, Bull. AMS, 44: 70-74, 1938. Zbl0018.36503MR1563683
- [18] L. N. TREFETHEN, Pseudospectra of matrices. In Numerical Analysis. 1991, D. F. Griffiths and G. A. Watson editors, Longman, Harlow, 1992. Zbl0798.15005MR1177237
- [19] L. N. TREFETHEN, Pseudospectra of linear operators. SIAM Rev., 39: 383-406, 1997. Zbl0896.15006MR1469941
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.