Semiclassical, asymptotics and dispersive effects for Hartree-Fock systems
I. Gasser; R. Illner; P. A. Markowich; C. Schmeiser
- Volume: 32, Issue: 6, page 699-713
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGasser, I., et al. "Semiclassical, $t\rightarrow \infty $ asymptotics and dispersive effects for Hartree-Fock systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.6 (1998): 699-713. <http://eudml.org/doc/193893>.
@article{Gasser1998,
author = {Gasser, I., Illner, R., Markowich, P. A., Schmeiser, C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hartree-Fock; semiclassical limit; decay estimates; dispersive effects; Vlasov equation},
language = {eng},
number = {6},
pages = {699-713},
publisher = {Dunod},
title = {Semiclassical, $t\rightarrow \infty $ asymptotics and dispersive effects for Hartree-Fock systems},
url = {http://eudml.org/doc/193893},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Gasser, I.
AU - Illner, R.
AU - Markowich, P. A.
AU - Schmeiser, C.
TI - Semiclassical, $t\rightarrow \infty $ asymptotics and dispersive effects for Hartree-Fock systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 6
SP - 699
EP - 713
LA - eng
KW - Hartree-Fock; semiclassical limit; decay estimates; dispersive effects; Vlasov equation
UR - http://eudml.org/doc/193893
ER -
References
top- [CG] J. M. CHADAM and R. T. GLASSEY, Global existence of solutions to the Cauchy problem for time dependent Hartree equations, J.M.P. 16(5), pp. 1122-1130, 1975. Zbl0299.35084MR413843
- [DF] J. P. DlAS and M. FIGUEIRA, Conservation laws and time decay for the solutions of some nonlinear Schrödinger-Hartree equations and systems, J. Math. Anal. Appl. 84, pp. 486-508, 1981. Zbl0481.35057MR639678
- [GMMP] P. GERARD, P. A. MARKOWICH, N. J. MAUSER and F. POUPAUD, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. 50, No. 4, pp. 323-379, 1997. Zbl0881.35099MR1438151
- [GV] J. GINIBRE and G. VELO, On a class of nonlinear Schrödinger equations. II. Scattenng theory, general case, J. Funct. Anal. 32, pp. 33-71, 1979. Zbl0396.35029MR533219
- [ILZ] R. ILLNER, P. F. ZWEIFEL and H. LANGE, Uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and the SchrödungerPoisson Systems, M2AS 17, pp. 349-376, 1994. Zbl0808.35116MR1273317
- [LPa] P. L. LIONS et T. PAUL, Sur les mesures de Wigner, Revista Matematica Iberoamericana 9, pp. 553-618, 1993. Zbl0801.35117MR1251718
- [LPe] P. L. LIONS et B. PERTHAME, Global solutions of Vlasov-Poisson type equations, preprint n. 8824, Ceremade, 1995.
- [LPel] P. L. LIONS et B. PERTHAME, Lemme de moments, de moyenne et de dispersion, C. R. Acad. Sci. Paris, 314, Serie 1, pp. 801-806, 1992. Zbl0761.35085MR1166050
- [M] P. A. MARKOWICH, On the equivalence of the Schrödinger and the Quantum Liouville equation, M2AS 11, pp. 459-469, 1989. Zbl0696.47042MR1001097
- [MM] P. A. MARKOWICH and N. J. MAUSER, The classical limit of a self-consistent quantum-Vlasov equation in 3d, M3AS 3, pp. 109-124, 1993. Zbl0772.35061MR1203274
- [P] B. PERTHAME, Time decay, propagation of low moments and dispersive effects of kinetic equations, Com. PDE 21, No. 3-4, pp. 659-686, 1996. Zbl0852.35139MR1387464
- [RS] M. REED and B. SIMON, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975. Zbl0308.47002MR493420
- [S] J. C. SLATER, A simplification of the Hartree-Fock method, Phys. Rev. 81(3), pp. 385-390, 1951. Zbl0042.23202
- [W] E. WIGNER, On the Quantum Correction for the Thermodynamic Equilibrium, Phys. Rev. 40, pp. 749-759, 1932. Zbl58.0948.07JFM58.0948.07
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.