Approximation de contours convexes par des splines paramétrées périodiques convexes C 1 , quadratiques ou cubiques

Ahmed Tijini; Paul Sablonnière

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 6, page 729-746
  • ISSN: 0764-583X

How to cite

top

Tijini, Ahmed, and Sablonnière, Paul. "Approximation de contours convexes par des splines paramétrées périodiques convexes $C^1$, quadratiques ou cubiques." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.6 (1998): 729-746. <http://eudml.org/doc/193895>.

@article{Tijini1998,
author = {Tijini, Ahmed, Sablonnière, Paul},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {parametric splines; periodic splines; spline curves; convex interpolation},
language = {fre},
number = {6},
pages = {729-746},
publisher = {Dunod},
title = {Approximation de contours convexes par des splines paramétrées périodiques convexes $C^1$, quadratiques ou cubiques},
url = {http://eudml.org/doc/193895},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Tijini, Ahmed
AU - Sablonnière, Paul
TI - Approximation de contours convexes par des splines paramétrées périodiques convexes $C^1$, quadratiques ou cubiques
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 6
SP - 729
EP - 746
LA - fre
KW - parametric splines; periodic splines; spline curves; convex interpolation
UR - http://eudml.org/doc/193895
ER -

References

top
  1. [1] Mc ALLISTER and J. A. ROULIER, Interpolation by convex quadratic splines, Math. of Computation, 32 (1978), 1154-1164. Zbl0398.41004MR481734
  2. [2] Mc ALLISTER and J. A. ROULIER, An algorithm for Computing a shape-preserving osculatory quadratic spline, A.C.M. Trans. Math. Software, 7 (1981), 331-347. Zbl0464.65003MR630439
  3. [3] E. NEUMAN, Convex interpolating splines of arbitrary degree II, BIT, 22 (1982), 331-338. Zbl0559.41005MR675667
  4. [4] H. METTKE, Convex cubic Hermite spline interpolation, J. Comput. Appl. Math., 9 (1983), 205-211. Zbl0523.65006MR715537
  5. [5] E. NEUMAN, Convex interpolating splines of arbitrary degree. In Numencal Methods of Approximation Theory V. L. Collatz, G. Meinardus, H. Werner (eds.), Birkhäuser, Basel (1980), 211-222. Zbl0436.41001MR573770
  6. [6] E. PASSOW and J. A. ROULIER, Monotonie and convex spline interpolation, SIAM J. of Numerical Analysis, 14 (1977), 904-909. Zbl0378.41002MR470566
  7. [7] L. L. SCHUMAKER, On shape preserving quadratic spline interpolation, SIAM J. of Numerical Analysis, 20 (1980), 854-864. Zbl0521.65009MR708462
  8. [8] M. P. EPSTEIN, On the influence of parametrisation in parametric interpolation, SIAM Journal of Numerical Analysis, vol. 13, N° 2 (avril 1976), 261-268. Zbl0319.41005MR445783
  9. [9] A. TIJINI, Splines cubiques généralisées. Thèse de 3e cycle, INSA de Rennes (1987). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.