Approximation de contours convexes par des splines paramétrées périodiques convexes , quadratiques ou cubiques
Ahmed Tijini; Paul Sablonnière
- Volume: 32, Issue: 6, page 729-746
- ISSN: 0764-583X
Access Full Article
topHow to cite
topTijini, Ahmed, and Sablonnière, Paul. "Approximation de contours convexes par des splines paramétrées périodiques convexes $C^1$, quadratiques ou cubiques." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.6 (1998): 729-746. <http://eudml.org/doc/193895>.
@article{Tijini1998,
author = {Tijini, Ahmed, Sablonnière, Paul},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {parametric splines; periodic splines; spline curves; convex interpolation},
language = {fre},
number = {6},
pages = {729-746},
publisher = {Dunod},
title = {Approximation de contours convexes par des splines paramétrées périodiques convexes $C^1$, quadratiques ou cubiques},
url = {http://eudml.org/doc/193895},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Tijini, Ahmed
AU - Sablonnière, Paul
TI - Approximation de contours convexes par des splines paramétrées périodiques convexes $C^1$, quadratiques ou cubiques
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 6
SP - 729
EP - 746
LA - fre
KW - parametric splines; periodic splines; spline curves; convex interpolation
UR - http://eudml.org/doc/193895
ER -
References
top- [1] Mc ALLISTER and J. A. ROULIER, Interpolation by convex quadratic splines, Math. of Computation, 32 (1978), 1154-1164. Zbl0398.41004MR481734
- [2] Mc ALLISTER and J. A. ROULIER, An algorithm for Computing a shape-preserving osculatory quadratic spline, A.C.M. Trans. Math. Software, 7 (1981), 331-347. Zbl0464.65003MR630439
- [3] E. NEUMAN, Convex interpolating splines of arbitrary degree II, BIT, 22 (1982), 331-338. Zbl0559.41005MR675667
- [4] H. METTKE, Convex cubic Hermite spline interpolation, J. Comput. Appl. Math., 9 (1983), 205-211. Zbl0523.65006MR715537
- [5] E. NEUMAN, Convex interpolating splines of arbitrary degree. In Numencal Methods of Approximation Theory V. L. Collatz, G. Meinardus, H. Werner (eds.), Birkhäuser, Basel (1980), 211-222. Zbl0436.41001MR573770
- [6] E. PASSOW and J. A. ROULIER, Monotonie and convex spline interpolation, SIAM J. of Numerical Analysis, 14 (1977), 904-909. Zbl0378.41002MR470566
- [7] L. L. SCHUMAKER, On shape preserving quadratic spline interpolation, SIAM J. of Numerical Analysis, 20 (1980), 854-864. Zbl0521.65009MR708462
- [8] M. P. EPSTEIN, On the influence of parametrisation in parametric interpolation, SIAM Journal of Numerical Analysis, vol. 13, N° 2 (avril 1976), 261-268. Zbl0319.41005MR445783
- [9] A. TIJINI, Splines cubiques généralisées. Thèse de 3e cycle, INSA de Rennes (1987).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.